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Definition. Adiabatic evolution of a quantum system usually refers
to its unitary evolution driven by external controls such that there
is no probability change on its instantaneous eigenstates of the time-
dependent system Hamiltonian.
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Abstract

We introduce the idea of adiabatic evolution (AE) in quantum mechanics
and also in the context of quantum control. To begin with, we explain AE
and the idea of shortcut to adiabaticity. For cyclic evolution, AE leads to
geometric phase and the non-Abelian ones: holonomy, which is central for
holonomic and anyonic quantum computing. We then focus on the adiabatic
quantum computing, and explain the proof of universality based on circuit-
to-Hamiltonian map. By viewing AE as a type of quantum control scheme,
we explain various control schemes, and we also analyze the key differences
between quantum control and quantum computing. Finally, we survey some
frontiers and stories in the history of AE.
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1 Minimal version of AE

1.1 Opening

The subject of this document is about driven evolution, which is the dynamics
not induced by the system Hamiltonian itself, but instead by external means.
Although sometime it might be hard to draw a boundary between external
and internal means, usually this can be clearly made. Driven evolution is
very common in our daily life, just like driving a car there are many ways to
perform it. Imagine a car does not have a Hamiltonian, it can only be moved
by a driver, can be slowly, abruptly, via zigzag path, circling, or any other
forms.

Adiabatic evolution (AE) is an ideal but common type of driven evolution,
originating from thermal physics. It refers to no exchange of heat of a system
with an external bath. So there could be work and exchange of particles. This
can be seen from the expression of energy E = µN +

∑
i piEi: the change of

energy δE can be from any of the variables in it. Heat refers to change of
probability pi, work refers to change of each energy level Ei, while particle
exchange is due to δN . We could also apply this picture to quantum systems,
except for new variables such as geometric phase.

AE has been very popular in quantum physics, from the early Landau-
Zener study, to the seminal Berry phase, and the recent application in quan-
tum computation via adiabatic passage, holonomy, or anyon braidings. In a
more general picture, AE belongs to the field of quantum control, which aims
to use external means to steer quantum systems to achieve some goals.

1.2 Primary

To introduce AE, we need a parameter-dependent Hamiltonian H(λ), while λ
depends on time t. For simplicity, we consider a model with H(t). In general,
the evolution U := T ei

∫
H(τ)dτ is extremely hard to solve. Adiabaticity is one

way to make this simple by just focusing on the Hamiltonian itself. Assume
1) H(t) can be diagonalized for all t with bounded spectrum {En(t)} and
eigenstates {|n(t)〉}; we assume no degeneracy for now; 2) H(t) is smooth
for all t; 3) there is no level-crossing, i.e., eigenvalues can never be the same;
4) d

dt
|n(t)〉 and d2

dt2
|n(t)〉 are piecewise continuous. Write the model as

H(t) =
∑
n

En(t)|n(t)〉〈n(t)|. (1)
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Any state in the basis {|n(t)〉} can be written as

|ψ(t)〉 =
∑
n

cn(t)e−iθn(t)|n(t)〉. (2)

Now comes the adiabatic part: the probability pn = |cn(t)|2 on each state is
required not to change. Hence we can assume cn ∈ R+ and be fixed. AE will
only change the phases θn(t) and the basis {|n(t)〉}, with the former contain-
ing a geometric part, and the latter refers to work. As pn does not change,
we can assume the initial state is a |n(0)〉, which evolves to e−iθn(t)|n(t)〉.
Apply H(t) on it and it is not hard to find

θn(t) =

∫ t

0

En(τ)dτ − i
∫ t

0

〈n(τ)|ṅ(τ)〉dτ, (3)

with the first term called “dynamical” phase and the second term called
Berry’s phase, i.e., the adiabatic geometric phase. As a global phase, the
Berry’s phase cannot be detected; however, superposition of different states
can manifest the difference of it, which is indeed measurable. The condition
of constant probability pn can be expressed as |〈m(t)|ṅ(t)〉| = 0 or � 1
∀m 6= n, which is the condition for AE.

Actually, geometric phase goes beyond AE. The essence is that there
should be a smooth sequence of states |ψ(t)〉 for t ∈ [0, T ] with |ψ(0)〉 =
e−iθ|ψ(T )〉. For a system, such states are called cyclic solution. We can
define cyclic non-adiabatic geometric phase, which is known as Aharonov-
Anandan (AA) phase. Given H(t), if |ψ(t)〉 is a solution, then define the
dynamical phase

θdy(t) :=

∫ t

0

〈ψ(τ)|H(τ)|ψ(τ)〉dτ, (4)

and the geometric phase is the difference θ − θdy(t). However, the cyclic
condition is no easier than the adiabatic condition. Note that the cyclic
condition does not imply H itself is periodic.

Back to AE, the difficulty is that it cannot be realized exactly. Any slow
change of external parameters will lead to a bit excitation, namely, the actual
state will not be the form (2). It turns out the solution (2) becomes exact if
a counterdiabatic (CD) term is added

HCD(t) = i
∑
m6=n

|m(t)〉〈m(t)|ṅ(t)〉〈n(t)|. (5)
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We can see the adiabatic condition from it easily. This CD term is found by
defining

U(t) =
∑
n

e−iθn(t)|n(t)〉〈n(0)| (6)

and H(t) = iU̇U †. For non-AE, this term can be added, and in general
[HCD(t), H(t)] 6= 0. We could use Trotter formula

∏
k e

itkHCD(tk)eitkH(tk) to
approximate the total evolution, which can be much faster than the original
AE. This is a central scheme for the shortcut to adiabaticity (STA). How-
ever, the CD term is usually too complicated to be applicable, or might be
forbidden by some super-selection rules.

In the above, the exact scaling in the adiabatic condition is not spec-
ified. That is, we did not specify how AE is approached, e.g., how much
time is needed, how difficult to realize a quasi-AE, or the degree of (non-
)adiabaticity. A simple way to measure the degree is to use ‖HCD‖/‖H(t)‖,
or other operator norms. A better way is to use the uncertainty principle: the
time-energy uncertainty specifies a tradeoff between time and energy. This
has been widely used in many settings such as quantum speed limit, quantum
estimation, and lower bound for quantum algorithm cost. One form of the
time-energy uncertainty is

τ ≥ c

∆H
(7)

for some constant c and ∆H =
√
〈H2〉 − 〈H〉2, which can be applied to

a quasi-AE at any instance. The evolution time τ will be longer if the
‘fluctuation’ of the spectrum ∆H is tiny. A similar form using the gap value
∆(t) along the path is τ ∼ O(maxt ‖Ḣ(t)‖/∆(t)2). From this formula, it is
clear that gap-closing is forbidden for AE.

1.3 More: holonomy

Recall that above we assumed no degeneracy. Instead, the degenerate case is
more interesting, which leads to ‘non-Abelian geometric phases’, also called
holonomy. For a set of orthonormal states |ψm〉 with parameter r and fixed
energy, the matrix-element of the holonomy is

γmn = −i
∫
dr〈ψm|∂r|ψn〉. (8)

4



The degeneracy condition is necessary to avoid dynamical effects. This plays
important roles for holonomic quantum computing (HQC) and anyonic (topo-
logical) quantum computing (TQC).

The HQC is usually realized in small systems, and gates via holonomy are
realized by tuning parameters in Hamiltonian. The degeneracy of states has
to be fine-tuned. A seminal system is the atom-laser coupled system, with
laser variables such as frequency, strength, and phase as external parameters,
there could be degenerate ‘dark states’. A holonomy, which is a unitary
operator, can be applied on the subspace of dark states via a path of external
parameters. Such holonomy is geometrical but not topological.

In TQC, the holonomy from anyon braidings is topological. In this case,
the external parameter is the location of anyons in a topological system.
The degeneracy of states arises from the fusion space of anyons. The nature
of topology is similar with the Aharonov-Bohm (AB) phase, which is also
topological. In the AB effect, the trapped flux serves as a nontrivial defect in
the configuration space of an electron, whose trajectory cannot be shrunk to
a point. This relates to the nontrivial homotopy of a circle, which counts the
number of windings. The topology is physically due to the gauge invariance
of electromagnetic fields, or in general, gauge fields. As we know, gauge
theory can be used to describe topological systems.

A final question is: is this topological holonomy adiabatic? Namely,
does the motion of an electron or anyon have to be adiabatic? For the AB
phase, it is not easy to tell. The spectrum of electron is gapless. AE would
imply a constant energy, but a circling electron might emit radiations. Using
the AA phase, it seems there is no need to be adiabatic. The trajectory
of an electron is just a cyclic solution for the AA phase. Similarly, anyon
braidings do not have to be adiabatic. However, non-AE of anyons, realized
by some external ‘dragger’, might cause thermal excitation of other anyons,
which could interfer with the desired braidings. There is a time window
for anyon braiding: it shall be faster than the possible dynamical effects
due to non-degeneracy of the fusion space, but slower that the creation of
thermal excitation. So, roughly speaking, anyons have to be moved quasi-
adiabatically.
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2 Advanced topics: adiabatic quantum com-

puting

The adiabatic quantum computing (AQC) is a direct application of AE which
does not reply on geometric phases. In AQC, the solution to a problem is
encoded in a complicated quantum state |ψf〉, which can be evolved adiabat-
ically from an easily prepared state |ψ0〉. Here, we analyze the most central
issue: how can AQC be universal? The universality means that it is able to
realize any unitary operator U ∈ SU(2n) acting on n qubits.

Usually, U is decomposed as a product of primary one and two-qubit
gates. If we simulate each primary gate by an adiabatic process, the whole
sequence of them may not be adiabatic anymore. Instead, the common sim-
ulation method is to prepare arbitrary state |ψf〉 generated by a random U .
The required time-dependent Hamiltonian is of the form

H(s) = (1− s)Hi + sHf (9)

for s ∈ [0, 1] as the effective time, and the model remains gapped for all s.
The solution is highly non-unique: given some states, there could be vast
kinds of Hamiltonians taking them as eigenstates. But the difficult part is
to prove the model is gapped.

Here we review the method based on Feynman-Kitaev space-time circuit-
to-Hamiltonian map. Instead of requiring |ψf〉 as the unique ground state of
Hf , it uses the history state

|Φ〉 =
1√
L+ 1

L∑
`=0

|ψ`〉|`〉 (10)

with |ψ`〉 =
∏`

a=0 Ua|ψ0〉 as the computation state at step `, with U =
UL · · ·U2U1, U0 = 1. The states |`〉 are ‘clocks’ that times the computation.
The history state can be formally written as a column-vector (ψ0, ψ1, . . . , ψL)t.
Now if we define terms

H` =

(
1 −U †`
−U` 1

)
(11)

in the subspace {|` − 1〉, |`〉}, we find it satisfies H2
` = 2H`, so 1

2
H` is a

projector, and H`|Φ〉 = 0. This leads to the model H =
∑

`H` which takes
|Φ〉 as a ground state.
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Now we apply this method to AQC. First, we need to design the clock. It
turns out there are many ways, and a geometric way is to let |`〉 = |0`1L−`〉
using L qubits, and there are (L + 1) clock states which are product states.
It is simple to see the state |Φ〉 is prepared by the circuit

∧U =
L∏
`=1

(P 1
` ⊗ U`)F |0L〉|ψ0〉, (12)

for the initial computation state |ψ0〉 usually set as |0n〉, P 1
` as the pro-

jector |1〉〈1| on the `th clock qubit. The gate F generates the clock state
1√
L+1

∑
` |`〉. The initial state is the ground state of

Hi = Hin +Hc +Hco, (13)

where Hin =
∑n

r=1 P
1
r ⊗P 0

1 projects out |0L0n〉, Hc =
∑L

`=1 P
0
` ⊗P 1

`+1 projects
out the clock subspace {|`〉}, Hco = P 1

1 projects out the clock state |0L〉. The
final model Hf is

Hf =
1

2
Hcir +Hin +Hc, (14)

with Hcir =
∑

`H`. Here H1 and HL in it are edge terms with H1 = h1⊗P 0
2 ,

HL = P 1
L−1⊗hL; all other H` = P 1

l−1⊗hl⊗P 0
`+1, and h` are of the form (11).

It is not hard to see Hf |Φ〉 = 0.
Now we have a model for AQC, the next task is to prove it is gapped.

The model H contains a set of projectors, the dynamic ground subspace of H
is spanned by {|ψ`〉|`〉}, which is of dimension 2n(L + 1). The idea to prove
the gap is first to prove the gap of the effective model of H on the ground
subspace, which is a simple quantum walk. We would not study the details
here. This subspace gap then will imply the gap of the model as

∆(H) ≥ Ω(1/L3), (15)

so the AE time scales as O(L3), independent of n, which means the simulation
of a circuit U is efficient. The cost due to n shows up in the number of terms
of H. Note that during the AE the exact form of the instantaneous ground
state of H(s) is unknown and not required. That is, the AE does not simulate
U step by step, instead it only simulates the input-output map |ψ0〉 7→ |ψf〉.

This is not the end of the story. Given |Φ〉, we still need to extract |ψf〉
from it. Apparently, we have to measure the clock state and we only obtain
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|ψf〉 with probability 1/(L+ 1), which is tiny! This appears as a flaw of the
method, but there is a naive way out: we could boost the success probability
by repeat it many times, namely, we attach a long string of identity gates
to the circuit U . Of course, there are also other clever ways, including other
designs of the clock. Besides, the above construction has been improved
in many ways, e.g., reducing the locality of terms, enforcing translation-
invariance etc.

3 Most relevant theory: quantum control

We could put AE in a broader perspective, which is quantum control. Quan-
tum control is an important subject in quantum engineering and quantum
physics, which aims to use external (sometimes internal) controllers to steer
a quantum system for some goals. Here ‘external’ usually means the control
parameters are classical variables, while ‘internal’ could mean the controllers
are also quantum or controllers can significantly modify the coherence of the
controlled system. In this way, AE is a simple quantum control that uses
adiabatic changes of classical variables to convert between states or generate
geometric phases.

Quantum control problem could be formalized as an optimization

max
c

f(c) (16)

for c as the controller and f(c) as the objective function. This appears simple
but it isn’t. There are nontrivial issues for all of its components:

1. The choices of c; e.g., it can be external fields, interaction strength,
etc, can be external or internal.

2. The choices of f . It depends on the goal of the control; e.g., the set
of desirable unitary operations. A key concept is controllability, which
asks if a target can be realized given a control scheme.

3. The choices of f(c). There are many functions that can be used, some-
times multiple ones are used to confine a range of optimal controls.

4. The set of f(c); e.g., if they are linear, convex or other special forms.

5. The algorithms to realize ‘max’. As usually is the case, optimization
problems are very complicated and there are tons of algorithms.
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Besides, some control problems do not focus on optimization at all.
In quantum physics, a seminal control problem is to use lasers to manip-

ulate the dynamics of an atom. This can be used to realize geometric phase,
quantum gates, a small heat engine, or for cooling, making BEC etc. We
have discussed quantum computing a lot above, so an immediate question is:
what is the difference between quantum control and quantum computing?
This is a difficult question since they overlap a lot. Below we list some of
their key concepts:

• QComp: information processing; logic; computational complexity; com-
puting models; universality; set of problems an algorithm can solve;
focus on states instead of Hamiltonian.

• QCont: system manipulation; mechanism of control schemes; control-
lability; robustness; usually assume Hamiltonian; optimal control.

Probably the primary difference is this: QComp relies on information, while
QCont relies on system, with the former connects with information theory,
the latter with system theory. A system is a collection of physical objects
with features, which can be states, observable, statistical properties etc. In-
formation is carried by physical objects but an encoding is needed to specify
the (logical) information, which is usually encoded in quantum states (rather
than Hamiltonian or observable). Because of this, QComp and information
theory need to study error correction to protect information, while Qcont and
system theory usually focus on robustness against perturbations or avoid er-
rors instead of correcting them. The notion of universality is stronger than
controllability, since the latter does not have to realize a whole unitary group
SU(d); on the other hand, the latter usually assumes a stringent set of con-
trols while the former does not.
From Fig. 1, you could see the connections among different fields. Try to
figure out what they are, or if there are more connections.

4 Frontiers

It seems there is no fundamental open problems relating to AE. The sub-
ject of AE and quantum control nowadays is mostly concerned for quantum
technology. Here we mention several frontiers.

More advanced control schemes are developed for quantum technology.
For instance, as the opposite of AE, a system can be acted upon ‘brutally’:
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Figure 1: Kaleidoscope of research fields.

this includes the sudden quench, bang-bang control, Zeno effect etc. Var-
ious schemes of STA to avoid AE are also frontiers. Our way of running
is an example of bang-bang control: you cannot run with one leg, instead,
we use the two legs alternatively and each with full strength, then we can
run forward. To realize the dynamics of a Hamiltonian H =

∑
nHn, with

[Hn, Hm] 6= 0, we can use short Trotter pulses eiτnHn sequentially. The Zeno
effect uses a sequence of projective measurements which strongly disturb the
coherence of a system. The sudden quench is mostly implemented on cold
atoms in optical lattices, which is used to study non-equilibrium dynamics
by suddenly changing some external parameters such as potential depth etc.
To realize a goal, sometimes these schemes can be combined together to form
highly nonlinear control paths: it may starts and ends suddenly but evolve
adiabatically in between, or be the opposite. It is worthy to also mention
another emerging technique known as Floquet engineering, which drives a
bare system periodically.

In AQC, there are focuses to look for more adiabatic algorithms. This
includes the study of other types of circuit-to-Hamiltonian maps, other forms
of universal AQC schemes beyond the Feynman-Kitaev method, the design
of more adiabatic algorithms; e.g., the AQC based on stoquastic Hamiltonian
and speedup proofs. The famous D-Wave machines realize AQC as a quan-
tum annealer, which can tune two-body interaction forms between qubits
and evolve a large system of qubits from simple states to more complicated
ones. Using quantum tunneling or excited states may provide speedups, but
these are more difficult to control than the ground state.

Geometric phases are important part of AE, even some geometric phases
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do not have to be adiabatic. The holonomy proves to be powerful than the
Abelian case. The holonomy for small systems is geometrical, so sensitive to
the control path. The holonomy for many-body systems (via anyon braid-
ings) is topological, but it is extremely hard to find non-Abelian anyons! So
there is the problem to look for other systems supporting holonomy which can
be robust stronger than geometrical ones but may be weaker than topological
ones. This robustness might be protected by a certain symmetry, redundancy,
or freedom to make changes. For instance, the symmetry-protected topolog-
ical order (e.g., valence-bond solids and topological insulators) is a novel
type of systems beyond anyonic topological systems and trivial symmetry-
breaking systems. The study of holonomy in this setting is a frontier.

5 History, people, and story

Although the idea of AE is apparent, in practice people need some criterion
to tell if a process is AE. About fifteen years ago, there was some arguments
about the necessary and sufficient condition for AE. The confusion comes
from the ignorance of the assumptions/requirements to define AE, which we
explained explicitly. With the requirements, the condition for AE is merely
‖HCD‖ is much smaller than ‖H(t)‖. In practice, it is better to specify the
time needed to realize an AE, which needs the gap value instead of the whole
Hamiltonian.

For quantum open systems, AE and geometric phases both have been
studied. This appears as a paradox since AE requires no exchange of heat
with the environment. Open-system dynamics such as Lindblad master equa-
tion ρ̇ = Lρ is due to exchange of energy, so AE implies that this dissipative
process must be very slow or weak, L̇ ≈ 0. This could be formally done but
has limited implications. Open-system geometric phases were also defined
but have less apparent physical meanings. Sometimes it is hard to draw
a boundary between math and physics: the math could be sound but the
physical meaning is confusing, but lots of progress of physics are driven by
beautiful mathematics.

The first quantum computing company is the famous D-Wave Systems,
founded twenty years ago in Vancouver, Canada. It uses thousands of super-
conducting qubits to build a quantum annealer realizing AQC. Ironically, it
is not recognized as a universal quantum computer for many reasons. The
qubits are very noisy, there is no error correction, and the annealer seems
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do not show quantum speedup. These arguments continue till today and
they are updating their systems constantly. Nowadays there are more quan-
tum computing companies, but they normally employ the standard circuit
model, instead of AQC. What will be the future? We cannot tell. The sit-
uation may change slowly or adiabatically, or even abruptly, depending on
what the driving forces are.
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