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Definition. A quantum Floquet system is defined by a time-periodic
Hamiltonian H(t) = H(t + T ) with period T . The evolution within
a cycle U(T ) can be treated as driven by a time-independent Floquet
Hamiltonian F , and in general, U(t) = P (t)e−itF for a time-periodic
unitary P (t) = P (t+ T ).
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Abstract

We introduce the Floquet engineering, which uses time-periodic Hamil-
tonian drives, in the context of quantum many-body systems. The foun-
dation for dealing with time-periodic evolution is Magnus expansion, which
is only physically proper if it converges. The power of Floquet engineering
can be seen from a simple example of a classical pendulum under a high-
frequency drive, which can change its equilibrate state at will. For quantum
many-body systems, care must be paid to avoid heating regime and reach
pseudo-equilibrium states, which can support exotic orders of matter, such as
time crystal. We then explain the relevant theory of many-body localization,
which allows an extensive set of conserved quasi-local observable induced by
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strong disorder, and survey some research frontier regarding quantum tech-
nology. We conclude with some stories and history of the subject.

1 Minimal version of Floquet theory

1.1 Opening

We might all have such an experience: you enjoy study in a coffee shop but
you cannot focus when you are at other places. The background music in
coffee shops seems as noises but they are not. They can help us to focus on our
study, suppressing random thoughts in our mind or noises in surroundings.
This actually can be viewed as kind of dynamical decoupling or Floquet
engineering, which uses non-resonant high-frequency drives (the music) to
dress the state of our mind to become a robust novel state.

Floquet engineering is widely used in classical physics and engineering.
In quantum physics, it has been widely used in quantum chemistry, e.g., to
control chemical reactions. Due to the periodicity, Floquet systems can be
analytically studied, far more easier than general time-dependent systems.
Due to the development of control of interacting quantum systems, recently
Floquet engineering is widely used to study quantum phases of matter; e.g.,
simulate desirable models or construct new quasi-equilibrate phases. Its full
power has not been unraveled yet.

1.2 Primary: Magnus expansion

Now we explain the basics of Floquet system, which starts from a time-
periodic Hamiltonian H(t) acting on a finite-dimensional Hilbert space, H.
We want to obtain its evolution operator U(t), which formally is

U(t) = T exp

(
−i
∫ t

0

H(τ)dτ

)
, (1)

for time-ordering T , which stands for the fact H(t) and H(t′) do not commute
in general. According to Floquet theorem, this can be further expressed as

U(t) = P (t)e−itF (2)

for F as an effective Hamiltonian, usually called Floquet Hamiltonian, and
a unitary P (t) = P (t + T ). The term P (t) is usually called “micromotion”
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since if we take a coarse-grained snapshots at stroboscopic times t = nT the
system is only described by the relatively “macromotion” F . Also U(0) =
P (0) = P (T ) = 1, U(T ) = e−iTF . However, this does not solve the problem
since the forms of P (t) and F are not known. It turns out this is difficult
and in fact there is no concise forms of them according to Magnus expansion,
which is an ansatz for U(t) as an exponent of a series.

The Magnus ansatz reads

U(t) = exp(Ω(t)) = exp

(
∞∑
k=1

Ωk(t)

)
(3)

for the mode operators Ωk(t). They are completely determined by

Ω̇(t) =
∞∑
n=0

Bn

n!
adnΩH(t) (4)

for Bernoulli numbers Bn and adjoint operator adΩ := [Ω, · ]. The mode
operators are obtained as integrals; e.g., Ω1(t) = −i

∫ t
0
H(t1)dt1.

The Magnus expansion is an ansatz since the series may not converge,
just like Taylor expansion. The convergence issue has been well studied, and
it usually requires a constant upper bound for

∫ t
0
‖H(t1)‖dt1 with a usual

operator norm ‖ · ‖. For Floquet system with a constant period T , the
convergence only needs a single period.

We can now apply Magnus expansion to the Floquet case, but still there is
no simple forms for P (t) and F . On the other hand, they can be nevertheless
worked out for specific systems. A final crucial feature we have to mention
is that there are some freedoms in choosing P (t) and F . First, F is modular
and there is an unphysical gauge redundancy to shift its eigenvalues, called
“quasi-energies”. This is like the quasi-momentum in solid-state lattice sys-
tems due to Bloch theorem. More importantly, we can use a rotating frame
defined by a time-dependent unitary G(t) with U(t) = G(t)Ũ(t)G†(0), and
obtain a new Hamiltonian

H̃(t) = G(t)†H(t)G(t)− iG(t)†Ġ(t), (5)

with i ˙̃U(t) = H̃(t)Ũ(t). We see that a term depending on Ġ(t) can change
the norm of H(t), and in general this can change our point of view of the
system. But, of course, finding a proper G(t) is a kind of art.
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1.3 More: Kapitza pendulum

How useful can Floquet engineering be? Let’s see a seminal example dis-
covered decades ago: a classical pendulum with oscillating suspension point,
known as Kapitza pendulum. The drive variables are the amplitude a and
the frequency ν. This system can be easily solved. The energy include the
potential energy

V = −mg(l cosφ+ a cos νt) (6)

with the mass m and length l of the pendulum, g as the free fall acceleration,
φ as the angle of the rope from the vertical axis, and the kinetic energy

K =
1

2
m(ẋ2 + ẏ2) (7)

with displacements x = l sinφ, y = −l cosφ − a cos νt. Now from Hamilton
mechanics, we can derive the equation of the dynamical variable φ as

φ̇ = −1

l
sinφ(g + aν2 cos νt), (8)

which is highly nonlinear.
The dynamics is very sensitive with a

l
, and ω

ν
for ω :=

√
g
l
. It could be

chaotic, for instance. What’s interesting here is that for small values of a
l

and ω
ν
, the pendulum obtains a distinct stationary location: φ = π instead of

φ = 0. This can be solved by using a Born-Oppenheimer-type approximation
to separate a slow part and a fast part of φ as φ := φ0 + ξ. The slow part φ0

shall be independent of ν, and it is easy to see

ξ =
a

l
sinφ0 cos νt. (9)

Then the slow part obeys

ml2φ̈0 = −∂V0

∂φ0

(10)

for an effective potential

V0 = −mgl cosφ0 +
m

4
(aν sinφ0)2. (11)

The behavior of V0 can be easily seen from a simple plot. It is a monotonically
increasing function when α := (a

l
ν
ω

)2 ≤ 2, but when α > 2, it develops a
maximum within the range [0, π], and the location φ0 = π becomes a stable
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point. The maximum serves as an energy barrier between the two minimal
at φ0 = 0 and φ0 = π, while the former has lower energy. Such an emergence
of new stable points is called dynamical stabilization.

So we see that the pendulum can stay at the upper point along with fast
wiggle ξ. This system can be used to encode a robust bit value! We can
encode bit 0 as φ = 0 and bit 1 as φ = π, and the bit is protected by the
Floquet drive against external noises. This encoding is distinct from the well-
known one via magnets: bit 0 (1) as total magnetization up (down). The
magnetic bit is robust against thermal noises below a critical temperature
Tc, and its robustness is from the interactions among spins and the phase
transition. Instead, the robustness of Kapitza pendulum bit is from the
dynamical stabilization.

Furthermore, we could take a step further to ask for a stable point at
arbitrary angle φ. It turns out this can be achieved by tuning the drive
direction, θ. In the parameter space of (θ, α), there can be a minimum φ
separated from φ = 0 by an energy barrier. As a result, we can realize a
sequence of stable angles

φ1 → φ2 → φ3 · · · (12)

by choosing proper drive directions. This can be done abruptly or adiabati-
cally. We can even drive the pendulum in the full 3D space.

We wonder if the exotic Kapitza pendulum can be applied to the quantum
case. There is an apparent similarity with a qubit: the qubit state can be
viewed as a point on the Bloch sphere, and its evolution is just the shift of
the point on the sphere. A common example of such a control process is the
Rabi oscillation. For instance, a model

H = ω0Z + ω1(X cosωt− Y sinωt), (13)

can prepare any state for a proper evolution time t. The Rabi oscillation has
a frequency Ω :=

√
∆2 + ω2

1 and amplitude ω1

Ω
, for detuning ∆ := ω − ω0.

We can see that at resonance ∆ = 0, the amplitude is maximal. What
happens if ω � ω0? One will find that there is no analog of dynamical
stabilization (despite that designed Floquet drives can be used to perform
qubit rotations). The reason is that the dimension of a qubit is too small,
and we have to require a large spectrum in order to find a quantum analog
of Kapitza pendulum. The strongly-correlated quantum many-body systems
are such candidates.
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2 Advanced topics: Floquet phases of matter

A natural task is to employ Floquet drives to manipulate quantum many-
body systems, such as quantum spin chains, Hubbard models etc. The ques-
tions are what Hamiltonian, what Floquet drives, and what goals shall be
chosen. Here we explain the notion of Floquet phases of matter.

A classical example of phases of matter is a magnet: it is defined by
a parameterized Hamiltonian H(λ) which have different phases separated
by phase transitions in the large system limit. The models are static, in
particular. For Floquet systems, this is not the case and driven systems are in
highly non-equilibrium. Also, there is a heating puzzle: a many-body system
has a large spectrum, so the system will heat up to infinite temperature in
principle, and there will be no interesting physics! To avoid this, one has to
carefully choose the models and the drive schemes.

People find a proper regime with local Hamiltonian and fast drives. A
Hamiltonian is local if

H =
∑
n

Hn (14)

for Hn acting on a finite (usually constant) number of sites independent of
the system size L. The terms are also bounded ‖Hn‖ ≤ h for a constant h,
which sets the local energy scale. An external drive V (t) = V (t+ T ) is said
to be fast if ω = 2π

T
� h, and it is also assumed to be local V (t) =

∑
n Vn(t).

Now the question is: can the Magnus expansion of the evolution U(t) be
convergent? For a constant T , the size of ‖H(t)‖T increases with L, so there
may not be a convergence. One can choose T to be small with 1/L, but this
becomes trivial if L→∞. Instead, it is possible that the divergence occurs
slowly, i.e., the system heats up slowly due to a slow absorption of energy
from the external drive. For local models, this is hinted from the notable
Lieb-Robinson bound

‖[A(t), B]‖ ≤ c exp (−a[dAB − vt]) (15)

for constants c, a, v, and dAB as the geometrical distance between the support
of local operators A and B, and A(t) = U †AU is the Heisenberg picture
evolution. The bound says that a local disturbance can only spreads out
with a speed v, which most likely is a constant. For Floquet drives, if ω � h,
which roughly means the system has to take many steps to absolve the energy,
and this leads to the celebrated prethermalization theorem.
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The theorem states that for a local model H(t), the Floquet evolution
can be written as

U(T ) = e−iTF +O(e−ω/h) (16)

for a quasi-local Floquet Hamiltonian F . In a rotating frame G(t) : H(t) 7→
H̃(t), the model can be approximated by F up to correction O(e−ω/h). This
means that before the prethermal time limit τ∗ ∼ eω/h, the system will remain
in a quasi-equilibrium state defined by F . We see that the prethermal time
is exponentially long of the drive ω, and this is long enough for interesting
physics to occur.

The proof of the theorem is quite involved, but the idea is clear: we
use Magnus expansion of the Floquet Hamiltonian and truncate the series at
order k ≈ ω/h. The rest of the series only contribute errors in order O(e−ω/h)
due to the locality. On the other hand, one would expect the prethermal time
could be shorter for nonlocal interactions, and this is indeed the case.

Next, we explain a prethermal phases of matter: a time crystal, which
spontaneously breaks the discrete time-translation symmetry. Namely, for a
drive with period T the Floquet eigenstates in the prethermal regime have
different period, NT for some fixed constant integer N . For instance, the
Ising case has N = 2, and the order parameter will take opposite values at
time T and 2T . The broken symmetry is an emergent and approximate one.
This can only occur for Floquet systems, with no analog for static systems.
To understand it, the Floquet evolution operator U(T ) is approximated by

U(T ) ≈ Xe−iTD, XN = 1, (17)

with [D,X] = 0 and D local. So X is a symmetry of the model D. This is a
finer version of the prethermalization theorem which highlights the emergent
symmetry. When it is spontaneously broken, the system is a time crystal.

A prototypical model is a half-spin system with stroboscopic Floquet
Hamiltonian H(t) = H1 for t ∈ (0, t1) and H(t) = H2 for t ∈ (t1, t2) with

H1 = −
∑
〈i,j〉

Jijσ
z
i σ

z
j −

∑
iα

hi,ασ
α
i , H2 = g

∑
i

σxi , (18)

for ~σ as Pauli operators. For T = t1 + t2 = 2π/ω, and ω � h for h as
the maximal coupling strength, it can be shown that X = ⊗iσxi , and the
effective model D is still two-local. This model will spontaneously break the
symmetry defined by X.
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Furthermore, there are other types of phases besides symmetry-breaking
ones. The most notable type is the symmetry-protected phases. We will
not explain this topic here; however, we need to point out that to define a
Floquet phase of matter, both the micromotion P (t) and F are needed. The
part F is analog of static systems, but P (t) is unique for Floquet systems.
Sometimes it is hard to obtain a desirable static model F , which may turn
out to be easier if F is generated by a Floquet scheme.

3 Most relevant theory: many-body localiza-

tion

Besides the clever drive illustrated by the prethermalization theorem, we
could also choose special types of models that forbid thermalization. In
general, systems that do not thermalize are non-ergodic, and the underlying
reason is mainly due to the presence of a set of explicit or emergent conserved
quantities, which defines integrability. Systems with many-body localization
(MBL) are such examples.

Consider the seminal XXZ model but with strong disorder

H =
∑
i

J(σxi σ
x
i+1 + σyi σ

y
i+1) + Jzσ

z
i σ

z
i+1 + hiσ

z
i , (19)

for the local disorder hi drawn randomly from a distribution. The model can
be solved via Bethe ansatz if hi is not random. When the disorder becomes
strong, there is a MBL phase for which all eigenstates of the system do
not thermalize. Namely, it violates the eigenstate thermalization hypothesis
(ETH), which states that the local observable takes a thermal value

lim
t→∞
〈ψ|O(t)|ψ〉 = tr(Oρth) (20)

for ρth ∝ e−βH . This is a local version of the well-known ergodicity theorem.
This means that for MBL the local observable will memorize its initial value
forever. The integrability can be seen by unitarily transform the model as

H =
∑
i

h′iτ
z
i +

∑
ij

Jijτ
z
i τ

z
i+1 + · · · (21)

with more many-body terms ignored here. The h′i are renormalized or dressed
version of hi. The operators τ zi are dressed version of local spins σzi = U †τ zi U ,
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known as “lbits”, and they decay exponentially from each central site i. It
is clear that the lbits are the conserved quantities, and they only interact
weakly since Jij ∝ e−|i−j|/ξ.

A complete theory of MBL has not been developed yet except the knowl-
edge from specific models. Compared with thermal phases which obey the
ETH, the features of MBL include:

• All eigenstates have analog properties with the ground states (GS);
e.g., entanglement. If GS obeys area law, then all states do. This also
means each eigenstate can be a ground state of a gapped local model.

• The Lieb-Robinson speed is very small. Namely, the Lieb-Robinson
bound is linear with time, which means it takes exponentially long
time for a local disturbance to spread out. This is exponentially slow
that a usual gapped local system. This can also be viewed as a defining
feature of localization.

• It can support phases of matter; i.e., it is robust against some type of
perturbations. MBL phases of matter are not defined by ground states;
instead, they are defined by the whole spectrum of a model. A MBL
phase is separated from non-MBL (i.e. thermal) phases.

Regarding Floquet engineering, it has been shown that MBL system with
Floquet drives can also support Floquet phases of matter, called Floquet
MBL phases. The reason is easy to see: since the system is localized, the
local Floquet drives will only have local effects, and the system can be viewed
as a collection of weakly interacting local oscillators. A MBL version of time
crystal has been discovered, which is more robust since the MBL is for the
whole spectrum. More MBL phases have also been studied, in general. For
instance, it has been shown that MBL is not compatible with non-Abelian
symmetry-protected phases, but compatible with Abelian ones. The reason
is that the non-Abelian symmetry demands degenerate excitations, which
however is inconsistent with a set of commuting lbits.

4 Frontiers

The field of Floquet engineering is at the intersect of several fields, including
quantum control, many-body physics, quantum computing, quantum trans-
port etc. Here we continue to layout several current focuses.
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One main direction we did not mention is Floquet band engineering which
designs electronic band structures of electron materials. One notable example
is the Floquet topological insulator. A merit compared with usual topological
insulator is that the Floquet drive serves as a controllable ‘switch’, so that
the bulk and edge modes can be controlled at will. Researchers are looking
for more types of ‘Floquet band’ materials, and they could be used in may
settings such as spintronics.

For quantum computing, an early example of Floquet scheme is the dy-
namical decoupling which aims to suppress decoherence of small quantum
systems due to coupling with a bath. Dynamical decoupling is also widely
used in many artificial systems. However, for robust (i.e. fault-tolerant)
quantum computing the main framework is to use decoherence-correcting
codes, which are large systems. Just like adiabatic or dissipative processes,
whether Floquet drives can be used to perform robust quantum gates are
generally unknown. Some recent study has constructed Floquet gates for
small systems without error correction.

Ergodicity is the reason for a system to become thermally trivial, so it is
of great interest to find non-ergodic system. The prethermalization, MBL,
and also glassy dynamics are good examples. Recently, the many-body scars
also attracts lots of interest. All of these concern the thermalization within a
closed many-body quantum system, which studies local-observable properties
across the whole spectrum rather than just the low-energy sector described
by quantum field theories. Whether highly excited states can be described
by quantum field theories is largely unexplored.

5 History, people, and story

The reason for the term “Floquet engineering” instead of “Floquet physics”
is mainly this field is driven by technical development instead of fundamental
physics. The theory of periodic and quasi-periodic driving was well estab-
lished decades ago. Just like quantum control, the main tasks in Floquet
engineering is to design drive schemes to achieve engineering goals instead of
solving physical problems. The recent development of Floquet engineering
especially in many-body system is due to the improved control technique in
artificial systems such as optical lattices.

The theoretical development of Floquet phases of matter is not due to
itself, instead it is due to the subjects of MBL and time crystal. The idea of

10



time crystal came around 2010 as a spontaneous breaking of continuous-time
symmetry, but this was quickly shown to be impossible for static ground
states or thermal states. MBL was established around the same time which
violates thermalization. So with no surprise, spontaneous breaking of discrete-
time symmetry was firstly discovered in MBL systems. The prethermal ver-
sion of discrete time crystal comes a bit later. A leading researcher who
made crucial contributions is a young theorist Dmitry A. Abanin, whose
main interest seems to be MBL instead of Floquet systems. This brief story
shows that progress in physics and science often originates from the interplay
among different subjects and fields, and the communication of people from
different fields.
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