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Definition. A fracton model is a gapped many-body system whose
excitations have restrictive mobility, and the ground-state degeneracy

could be extensive.
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< Abstract >

This is a brief review of fracton phases of matter. We introduce fracton
phases from the high-rank gauge field theory, and then we survey several
simple models with fractons. Next we discuss the application of fracton
phases for quantum computing, serving as logical qubits. We then discuss
its relation with topological order and some of open problems in the field.

1 Minimal version

1.1 Opening

In modern condensed matter physics, topological order is a main stream.
Fracton order, on the other hand, grows out of it but has distinct features.



It just has been developed for one decade, and most of researchers are very
young, probably under thirty. There are some features that are believed to be
characteristic, yet also some to be optional. It lacks a boost from experiment:
there is no material identified as fracton matter with exotic phenomena.

Geometry, symmetry, and topology play crucial roles for fracton order,
but it seems geometry is more important. One big problem in physics is how
to quantize gravity, and the current understanding is based on holography.
Fracton phases show some relations with gravity based on tensor gauge field
theory; in this respect, it is a promising research direction.

1.2 High-rank gauge field theory

It turns out it is easier to understand fracton phases by treating them as a
kind of generalized Maxwell theory. As we know, Maxwell equations describes
E and B fields, and Gauss’s law V - E = p specifies the gauge invariance.
Charge p and current J are put in the theory ‘by hand’; the backaction of
charge or current on the field itself is not taken into account. The charge
conservation says that charges cannot be simply created or destroyed, but
they are free to move around.

We know that charges can form dipoles. How about the case when dipoles
are conserved? In this case, charges cannot move freely but dipoles can.
Instead of using a constrained Maxwell system, it turns out it is better to
generalize it from vectors to tensors. Namely, replace A by tensor potential
A =[4,], E and B also be tensors E = |Ei;], B = [B;;|. Here, the tensors
are just 3 by 3 matrices. How about charges? In Maxwell theory, charges
are scalars. Here it appears there are two choices

00;EY = p, or O;EY = pl, (1)

i.e., it could be a scalar or a vector. For the first case, charges () = fv dzp
of a region V and dipole moments P* = [, dzpz’ are conserved. For the

second case, the vector-charge Cj = fv dzp and angular charge moment M =
Ji, dz(p x Z) are conserved. In total there are six of them. A vector charge
can only move along the direction of its charge vector, instead of being fully
static. As we will see below, the two cases describe two types of fracton
phases.

The above facts make the high-rank gauge theory interesting, yet it is
not fully developed. Also we shall note it is different from Yang-Mills gauge
theory, which also originates from Maxwell theory.
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Figure 1: The two Hamiltonian terms for each cell of the Haah’s model.

1.3 Toy models

Here we discuss several toy models that reveal features of fracton phases.
These features are believed to be common, but it is unclear what is funda-
mental, i.e. as the defining features of fractons.

1.3.1 Haah code

Consider the so-called Haah’s model, or Haah code. This model is defined
on the 3D cubic lattice, but each site has two qubits. See figure ?7. The
Hamiltonian is commuting, so it is exactly solvable. It is also a stabilizer
code, which is specified by a set of stabilizers formed by products of Pauli
operators. Here the stabilizers are just product of Z or X as specified.
Stabilizer codes are common in quantum error correction since they describes
Pauli noisy errors well, which anticommute with some stabilizers, hence can
be corrected. In quantum computing, it is usually enough to only consider
Pauli noisy errors.

For Haah’s model, exact excitations are created by Pauli operators Z or
X. Each site is shared by eight cubes, but a single-site Pauli operator only
violates four Hamiltonian terms, hence four excitations (or quasiparticles).
The nontrivial fact is that these four ‘fractons’ can only be separated by a
fractal regions: this means that a single fracton cannot be moved freely and
smoothly through the system. The fractal structure is a geometric effect
to restrict its mobility. The ground-state degeneracy is complicated and
depends on system size. It is sub-exponential with the edge size. The method
to prove this is to use the stabilizer formalism. For a stabilizer code with n
qubits, if there are k independent stabilizers, then the degeneracy is 2"*. So
if we add more stabilizers to the Haah code, the degeneracy can be reduced.



1.3.2 X-cube model

Now, let’s see the so-called X-cube model, for which some dipoles are ‘anisotropic’,
i.e., they can move in a certain fixed direction. The model is also defined on
the 3D cubic lattice but with one qubit on each edge. There are also two
types of terms: the cube term is weight 12 as a product of X around a cube,
and three types of vertex term each is weight 4 as a product of Z around a
vertex but living on a plane. (Try to draw this!) The model is commuting
and also exactly solvable. The ground-state degeneracy is exponential with
the system size. Excitations by Z or X behave differently, as hinted by the
different forms of stabilizer terms. A single Z operator will create four frac-
tons, each of them cannot move freely. A single X operator will create two
fractons, but each of them can move freely along a line; as such, they are
called ‘lineon’.

1.3.3 Classical spin model

It seems that some sort of geometric frustration is the reason for being frac-
ton. The ground-state degeneracy seems being a result of lacking sufficient
number of stabilizers. So one question is whether this is an intrinsic 3D phe-
nomena. It turns out no. A simple model is the 4-body Ising model on a
square lattice, with —ZZZ 7 terms for each four spins around a square. It
is easy to find the ground-state degeneracy is extensive. A simple one is the
ground state with all spin up, and another one with all spins above a line up
and below the line down, etc. These ground states are all product states, i.e.
classical, but with different magnetization. The large degeneracy can also be
seen as the result of subsystem symmetry, which is a line operator of X along
the two directions of the lattice. The model has fractons: if we divide the
system to four quadrants as two orthogonal lines, then flipping all spins in
a quadrant will create a single fracton at the intersect. It cannot be moved
freely. It is truly a global effect! Flipping again the spins except one row will
leave two fractons. Now this pair of fractons can move along its row, so are
lineons. Crucially, this model does not show any entanglement, but it has
some interesting relation with classical gravity.

1.3.4 Valence-bond solids

Another interesting model is an extended valence-bond crystal on the square
lattice. Given four spins sharing a square, an extended valence-bond is the
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superposition of |s)12]5)34 and |s)13|s)24 for |s) as the singlet. Now it is easy
to see each spin can only share one extended bond, and there are four ground
states. The interesting thing is that if there is a single unpaired spin, i.e.
so-called spinon, then it cannot move freely with no energy cost, so it is a
fracton. This is simply a geometric frustration. However, a pair of spinons
can switch their locations with an extended bond, so they can move along
one direction. This model also does not support extensive entanglement.

The last two models do not have topological order; instead, they are very
classical. By definition, fracton phases do not have to be quantum or have
large amount of entanglement.

Could there be one-dimensional fracton models? It seems there is no
fundamental reasons to forbid this. The immobility appears similar with
the idea of confinement, which shows up in valence-bond solids. For the
SU(3) AKLT model with on-site adjoint representations, which are eight-
dimensional, it has two ground states. There are two types of excitations:
domain wall which is 3 ® 3 or its conjugate, and the ‘adjointor’ which is the
irrep 8 = 3 ® 3. A domain wall is a pair of 3, and this pair is free to move.
However, a single irrep 3 is not free to move, i.e., it is a fracton. This is also
a consequence of geometry since it can only hop to another site by inducing
a dimer (i.e. singlet), which takes energy.

2 Advanced topics: self-correcting qubits

Here we discuss application of fracton order in quantum computing, namely,
using them as qubits. Usually, a qubit is encoded in a logical subspace C as
part of a total space

H=ChS (2)

for S as the syndrome space. Ideally, our quantum information [¢) is in
the space C, but noises will make leakage to the space S. The role of error-
correction is to measure some local operators, e.g., stabilizers, to identify the
noises, hence we can correct them. A big task in quantum computing is to
find good error-correction codes for qubits. Now a so-called self-correcting
qubit is even more powerful: no error correction is needed during the com-
putation, only when the final quantum information has to be revealed at the
end. Unfortunately, people do not find any self-correcting qubits in nature
yet.



A sufficient, but not necessary, condition for being self-correcting is that
there is a finite temperature phase transition. This is motivated by the ana-
log to the 2D classical Ising model, which has a critical temperature 7, and
serves as the standard classical memory. We know that a generic system will
thermalize at a finite temperature to a Gibbs state e ?#, so how to encode
information in it? The correct way is not to use Gibbs state since it cannot
encode qubits, instead we will actually not allow the system to thermalize,
before we finish the computation. For thermally stable phases, such as ferro-
magnet, the system will memorize its initial state for an exponentially long
time

T~ PR (3)
which is known as the memory time, and here A is the energy barrier between
any two logical gates. For 2D Ising model, A ~ L, the system size. This is
the Arrhenius law. To find the state of a ferromagnet, we just measure its
magnetization.

It turns out there is one self-correcting qubit: the 4D toric code. Recall
that the 2D toric code has two types of excitations: point-like magnetic anyon
m and point-like electric anyon e. They are deconfined, i.e., they could move
freely and the energy barrier for logical gates is a constant, so the code is
not thermally stable. The 4D toric code is a full generalization of the 2D
case, now the magnetic and electric excitations are loop-like, as boundaries
of membrane operators. The size of loops is confined, and this makes the
code thermally stable, just like the 2D Ising model. Another way to view the
4D toric code is to treat it as some kind of product of two 2D Ising models,
one for the Pauli X sector, and one for Z sector.

It is now the time to see how fracton order behaves. The nature of fractons
and anyons are distinct: fractons are immobile or confined, while anyons are
deconfined. In other words, topological order is a kind of liquid, while fracton
order is a kind of glass, as will be discussed in the next section. Let’s see
the 3D Haah code, which is the most well-studied one. The fractons are still
point-like but now they are immobile. The operators that separate fractons
apart are geometrically fractal, with the size of support as O(log L), which is
basically the code distance, for linear system size L. This is also the energy
barrier of the code, so we will expect that the memory time

THaah ™~ LB (4)

This scaling has been proven rigorously. Let’s see how this is proved. The
setting is the system starts from a mixed ground state p(0), and the system
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is in a bath at § with Lindblad-type dissipation, and gates U are applied
without error-correction in between. Within the memory time, noises cannot
induce any logical error (e.g. Pauli gates). At the end, we need to compare
the state Up(0)UT with DG(p(0)) for G = [[.EU;, for U = [[,U; as a
sequence of logical gates, and & = e%* as the noisy process with Lindblad
superoperator L, and D as the final decoding procedure, which will need to
measure all stabilizers and correct errors according to the syndrome, with
some classical decoder. For simplicity, we ignore the gates, and it is proved
that the distance

d(p(0), D(p(t))) < O(H)2"PL*, ()

for constant ¢, k(L) as the number of logical qubits. This means that for small
k(L), the memory time can be as big as L*~3. However, this does not grow
exponentially with L and it is known that there is no critical temperature
for Haah code. The code is usually called a partially or quasi self-correcting
qubit. The idea to prove the bound is to first separate p(t) into two parts:
one below an energy barrier m ~ log L, and the other above it. Assuming
Lindblad operators are local, then it is not hard to see that the low-energy
sector can be fully recovered by the decoder. Now the bound only concerns
how large the high-energy sector is, which is a leakage from the code space
(below the energy barrier). We will not explain the details, but note that in
the bound O(t) is the evolution time, i.e., the diffusion time of fractons, 2¢(%)
is the logical dimension which relates to the ‘size’ of leakage channels, and
L37¢% comes from a combinatorial fact that we have to average the effects of
local Lindblad operators across the system.

3 Most relevant theory: topological order

Here we compare fracton order with topological order briefly. As we men-
tioned, the former is more like glass, and the later like liquid. In general,
there are both immobile fractons and mobile fracton pairs in a fracton sys-
tem, and the two types of excitations can have nontrivial interplay. Imagine
that they have very different mobility. The fracton pairs may thermalize,
then showing a volume law of entropy. While the fractons may not since
each fracton can be bound to a site or a fracton pair. So, it is expected that
fracton will show glassy dynamics, which is non-ergodic and takes very long
time to reach thermal equilibrium. For Haah’s model, the glassy dynamics
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is more apparent since there is no mobile excitations. Another perspective
is many-body localization (MBL), which will prevent a system from ther-
malization. Here, fracton systems exhibit sort of quasi-localization without
explicit randomness.

Algebraically, a topological order is defined by the set of anyons {a;} and
their fusion rules NJ; with

a; X a; = Z NZ»’;-ak. (6)
k

This relation actually originates from conformal field theory (CFT) with a;
known as primary fields, proved via operator-product expansion. There are
also other equivalent ways to defined them, such as F' and R moves, or the
modular matrices S and T, with central charge c. So, what are the defining
features of topological order? It seems this has not been agreed on, but there
are some common ones:

1. the ground-state degeneracy depends on the topology of the manifold,
e.g. genus.

2. there are edge states for manifolds with boundaries described by some
CFT.

3. there are anyons in the excitations. Anyons may be of various shapes,
e.g., points or loops.

Except the above, there are also other features, such as a gap for excita-
tions, description by topological quantum field theory, as the gauged dual of
some symmetry-protected topological order, or there are nontrivial braiding
operations. Among these, the braiding forms the foundation for topological
quantum computing. Qubits are encoded into a subspace with a fixed num-
ber of non-abelian anyons, and the braidings induce non-abelian geometric
phases on the subspace, which are the gates, known as holonomy. However,
non-abelian anyons have not been found in physical systems, and people are
trying to simulate them.

4 Frontiers

The field of fracton phases of matter is not mature yet, although it has been
a decade. There are plenty of things to work on. Below we survey some of
them.



A complete field theory describing fractons has not been established. The
high-rank gauge theory is only at an early stage. A recent study shows that
a certain coupling between usual vector gauge field theories can also lead to
fractons, as hinted by the fact that fracton models usually can be constructed
by the coupling of other simpler models. For instance, the X-cube model can
be viewed as a coupling among 2D surface code sheets. More connections
with high-energy physics or particle physics are also needed to demonstrate
the power of high-rank gauge theory.

The entanglement features of fracton models need more study. It seems
both classical and quantum systems can support fractons, so the relation
between entanglement and the confinement of fractons is not clear. The
Haah’s code shows an extensive amount of entanglement, measured by bi-
partite entropy, and it has been shown that there are geometrical effects
besides topological ones. The interplay between geometry and entanglement
is also a central issue for holography (using tensor-network approach), and
indeed there are some similarity between fracton phases and gravity, both
described by tensor fields. It is not clear whether topology is necessary for
fracton phases or not. As fractons are more likely 3D objects, it is expected
that there might be some relation with quantum gravity.

A complete classification of fracton phases is not known yet, which has
been well established for other phases, e.g., topological phases, symmetry-
protected phases. From the perspective of symmetry, topological phases
spontaneously break high-form symmetries, while it seems fracton phases
are often protected (i.e. unbroken) by high-form symmetries, or subsystem
symmetries. There are also classification based on multipole algebra, which
clearly is not fully understood/developed yet.

5 History, people, and story

Fracton models are mainly inspired by topological order. In quantum com-
puting, people are struggling to find good qubits, and topological qubits are
expected to be the best. However, as far as we know, topological order is not
stable at any finite temperature. Namely, anyons induced by thermal noises
are free to move, i.e. deconfined, hence they can lead to random braiding
patterns and destroy the topological order. The work by J. Haah (when he
was a student) inspired study of self-correcting qubits. These models are
simple but strange at that time. It is only these years when the idea of



fracton phases is developed that Haah’s codes are understood in a general
framework. This brief story tells us that usually when you are trying to
find something new, and especially when you found something, you may do
not understand it very well. But this is actually how science grows; science
usually do not follow any plan by people with obsolete knowledge.

Another interesting fact of this field is that lots of leading researchers are
very young, as graduate students or postdoc. It is hard to tell why it is so.
Probably there are several factors. One is that there are no big figures, i.e.
leading scientists in this field. These people may be motivated by quantum
information science, and do not identify themselves as condensed matter
physicists. So there is no group of people following them. Another reason is
that condensed matter physicists are mainly interested in topological order,
phase transition, and other topics with a notable history and connection
with experiments. These topics have many connections with other topics
and principles in physics, so there is no strong reason for them to jump into
an unfamiliar cage.
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