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Definition. A gauge theory is a model of quantum systems with
gauge redundancy, described by a group, and there are a finite number
of gauge fields which can be coupled to external matter fields following
the minimal-coupling rules.
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Abstract

A brief review of gauge theory in the contexts of standard model of parti-
cle physics and lattice gauge theory is given. We introduce the idea of gauge
from electromagnetism, and then explain the Higgs mechanism of gauge-
matter coupling for the U(1) case. We then give a brief account of general
Yang-Mills theory and the difficulties. Furthermore, we use concrete exam-
ples to explain lattice gauge theory and the idea of gauging. Finally, we
survey the standard model and some frontiers of gauge theory.
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1 Minimal version of Theory

1.1 Opening

Although being centuries’ old, electromagnetism has profound impact of our
world, which cannot be matched yet by quantum theory. It is the first
example of a gauge (field) theory, which, together with Relativity, opens up
the study of the structure of spacetime of the universe. Gauge theory plays
central roles in electrodynamics, the standard model of particle physics, and
also string theory, etc.

What is a gauge? It is usually called a gauge symmetry, but many people
strongly disagree and prefer to called it “gauge freedom” or “gauge redun-
dancy”. As we will see, it does not relate to conserved quantities of the
system itself, instead it indicates some missing information of a more com-
plete description of the system.

The basic framework to construct a gauge theory is the Yang-Mills theory,
which could be defined for many Lie groups. To solve these systems prove
to be very difficult. Besides, the proper coupling with matter fields is also
sophisticated. The Yang-Mills gauge fields are gapless, and when applied
to physics, in particular, particle physics, the Higgs mechanism needs to be
involved for gauge bosons to obtain mass. Particle physics or high-energy
physics aims to explain the behavior of a big family of particles. Right now
there are still lots of mystery. The lattice gauge formalism, together with
quantum simulators for them, are expected to resolve many puzzles.

1.2 Basics: U(1) gauge theory

The simplest gauge theory is the electromagnetism described by Maxwell
equations, which has U(1) gauge group. Without source terms, the two
dynamic equations are

− ~̇B = ∇× ~E, ~̇E = ∇× ~B, (1)

and the two static constraints, as Gauss’s law, are

∇ · ~E = 0, ∇ · ~B = 0. (2)

Note we ignored constants such as speed of light c and Plank constant h
for simplicity. The first interesting thing is the dynamics can be written as
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Schrödinger equation i|ψ̇〉 = H|ψ〉 with

|ψ〉 = ~E + i ~B, H = ∇× . (3)

We could use ∇ = i~p, and then it is obvious the Hamiltonian is a kind of
spin-orbit coupling of photons, similar with Dirac equation for electrons. The
solution is easy to obtain |ψ(t)〉 = eitH |ψ(0)〉, but there is a lot of freedom
to fix the initial state |ψ(0)〉.

The Gauss’s law now comes into play: it provides constraints at each
point of the space. In all, the four equations describes the gauge fields, i.e.
wavefunctions of photons, in free space except for some extrinsic charge or
current defects. Now, where does the gauge freedom comes from? First, we
introduce the scalar φ and vector potential ~A, and usually

− ~E = ∇φ+ ~̇A, ~B = ∇× ~A. (4)

Let the 4-potential Aµ = (φ, ~A), then the gauge freedom means that Aµ →
Aµ+∂µf would not change the physics, for any scalar function with ∂µ∂

µf =
0.

The question to ask is that: if ~E and ~B are wavefunctions, then what
are the potentials? Are they metric tensor? It turns out they are not. The
potential Aµ is usually treated as a connection of a U(1) vector bundle,
and the fields are components of the curvature F µν = ∂µAν − ∂νAµ. The
curvature is invariant under the gauge transformation, and it does not depend
on any metric tensor. However, this geometric interpretation does not explain
the physics clear. It is still not clear why Aµ exists, and we really do not
know! Perhaps it relates to the inherent nature of the space(-time) itself. For

instance, the dependence of the field ~E(xµ) on the coordinate xµ may come
from an ignorance of the quantum nature of the space; namely, let operator
x̂µ act as x̂µ|xµ〉 = xµ|xµ〉, and

| ~E〉|xµ〉 → | ~E(xµ)〉 (5)

ignoring the space. Such a tracing out process is described by completely
positive maps, which are common in the study of quantum open-system
dynamics. The gauge freedom can now be easily understood: it is due to
the ignorance of some underlying features of the space and the interaction
between the space and fields. However, we would not pursue this point too
far.
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The U(1) gauge freedom can also be seen if we put an electron in the field.

Classically, it will be acted upon by the Lorentz force ~F = qe( ~E+~v× ~B), which
however cannot see the U(1) gauge. We have to consider the wavefunction
of the electron and it will pick up a phase

eie
∮
Aµdl, (6)

which is the observable effect of Aµ. The U(1) freedom will make a global
phase shift which clearly does not change the physics. Such phases can
be described as Berry phase which is of geometric nature, and it can even
be topological if the field configuration is topologically nontrivial. This is
revealed by the famous Aharonov-Bohm effect.

We still notice an asymmetry for the relation between fields and potentials
above. It turns out this is only apparent: if there are magnetic monopoles,
then there will be a full duality between the electric and the magnetic fields.
One way is to introduce in a new 4-potential Cµ = (ϕ, ~C), and

− ~E = ∇φ+ ~̇A+∇× ~C, (7)

~B = −∇ϕ− ~̇C +∇× ~A. (8)

The Lorentz force becomes

~F = qe( ~E + ~v × ~B) + qm( ~B − ~v × ~E). (9)

However, monopoles are still a missing piece of the electromagnetic world.

1.3 Higgs mechanism and superconductors

Now let’s see how gauge fields couple to matter fields, which could be bosonic
or fermionic. We know photons are massless. Let’s see how photons can
obtain an effective mass. This is the Higgs mechanism and can be easily
illustrated by superconductors!

We are very familiar with the phenomenology of superconductors: it needs
a phase transition at lower temperatures, it shows zero resistance, Meissner
effect, surface current, and it is gapped. To understand the deeper mecha-
nism, we need a U(1) gauge theory coupled to a scalar matter field. Here the
gauge field is photons, while the scalar field φ is the wavefunction of Cooper
pairs. This is a U(1) Higgs model

L = −1

4
F µνFµν + |Dµφ|2 − V (10)
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for a potential V = m2|φ|2 + λ|φ|4, similar with the phi-4 theory. The
covariant derivative isDµ = ∂µ+iqeAµ. This model has two phases depending
on m2 and λ: a phase with definite value of |φ|, and a phase with |φ| = 0.
The first phase is the superconducting phase, which is usually understood as
a spontaneous breaking of the global U(1) symmetry.

Now we can see what the Higgs mechanism is. We can set φ to its fixed
value, φsc, then the effective model for the superconducting phase is

L = −1

4
F µνFµν +

1

2
q2eφ

2
scA

µAµ. (11)

This means that photons have a mass m = qeφsc, for qe as the charge of a
Cooper pair. It is usually said that the Goldstone boson φ is “eaten” by
the gauge boson, which is the photon, and this provides the origin of mass.
Now because of the photon mass, the electromagnetic field cannot propagate
in the bulk of a superconductor, leading to the repulsion of magnetic flux
of Meissner effect. The Higgs mechanism plays central roles to explain the
origin of mass in particle physics.

1.4 Main: Yang-Mills theory

We have hinted two points of views of Maxwell theory above: symmetry and
geometry. The geometric one is developed for unification theory with general
relativity, which eventually leads to string theory. The symmetrical one leads
to Yang-Mills theory, which forms the foundation of the standard model of
particle physics.

Let’s discuss the SU(n) Yang-Mills theory. Denote the generators of
SU(n) as T a, and there are n − 1 of them. The potential Aµ will be gen-
eralized to a set of them Aaµ, same for the tensor F a

µν . The curvature and
connection will take the form

Fµν = T aF a
µν , Aµ = T aAaµ, (12)

with summation of repeated index. Different from the abelian case, there is
a commutator in the curvature form

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (13)

The geometry of the SU(n) manifold defines a natural covariant derivative
Dµ = ∂µ − iAµ. Now geometric identity leads to the analog of Maxwell
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equations
DµFµν = 0, DµG

µν = 0, (14)

for the dual tensor Gµν = 1
2
εµνρσFρσ.

We notice a key difference from the U(1) case: here the covariant deriva-
tive Dµ is used instead of the ∂µ. This prevents from breaking the equations
down to the level of fields, and there are self-interaction of fields leading to
nonlinear dynamics which is apparently inconsistent with Schrödinger equa-
tion! Well, we could interpret this as a nonlinear modification of it, just like
Gross–Pitaevskii equation describing the BEC condensate. Also because of
the nonlinearity, the Yang-Mills equations are extremely hard to solve. There
are only a few of ansatz despite more that half a century’s work.

How the gauge group acts? This is also a key difference from the abelian
case: the curvature F is not invariant, instead it is only covariant Fµν →
g(x)Fµνg(x)†, for g ∈ SU(n). However, the Hamiltonian and action is in-
variant since they are of the form trF µνFµν , for which the effect of gauge
transformation cancels. Besides, another key difference from the abelian
case is there is no duality between the electric and magnetic fields anymore.
However, such a duality can be enforced by hand as a type of solutions.

The Yang-Mills equations are difficult to solve in general due to its nonlin-
earity. Ways to find solutions are usually from analog with nonlinear optics,
wave mechanics, or from ansatz. The famous Wu-Yang monopole describes a
pure single monopole with 1

r
-form potential; as we know no monopole of any

kind has been found in nature yet. Another type of solutions are instantons,
which have short lifetime, and they can be used to explain tunneling and the
structure of vacuum.

1.5 More: lattice gauge theory

To consider the “quanta” of gauge fields, we have to do a second quantiza-
tion of the gauge fields. This could be done using path integral, or more
abstract methods. However, like QED, there are lots of problems relating
to divergence. So there is a different approach: instead of using continuous
variables, we use discrete space and more general field variables. This is
Wilson’s approach of lattice gauge theory.

Putting a gauge theory on a lattice brings many benefits: it is suitable
for numerical simulation, it leads to a lot of lattice models, and etc. But
there may also be non-universal features depending on the lattice, which we
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should keep in mind. It is very useful to study non-Abelian gauge theory,
especially for strong interaction of quarks.

To explain lattice gauge theory, we shall start from the simplest one: Z2

gauge, which can be easily generalized. It applies to spatial dimension D ≥ 2.
Consider the 3D cubic lattice, and put a spin-1/2 on each edge. Now define
the Wegner model

H = J1
∑
r

Xr + J4
∑
�

Z� (15)

with Pauli X on each spin and 4-body product of Pauli Z on each unit
square. The model looks simple, but it is not commuting. First, we can tell
that when J1 terms dominate, the system is a paramagnet (PM); when J4
terms dominate, it is another phase. The system has a gauge symmetry: X̄
with 6 Pauli X around a site, for all local sites.

The construction can be generalized. For U(1) case, we can put a phase
eiθ on each link, and for unitary group, we can put a group element g on each
link. What is subtle for the non-Abelian case is that the gauge symmetry,
Q(r), do not commute with each other, although they commute with the
Hamiltonian.

The gauge-invariant observable are Wilson loop operators, W . It turns
out there are 2 phases: one is a confined phase with string tensions for Wilson
loops, and one is deconfined with no string tension. The confined phase is
the PM, and string tensions (i.e., extensive energy cost) come from each local
term Xr. The thermal average 〈W 〉 ∼ e−Aβ, as an “area law”, while for the
deconfined phase 〈W 〉 ∼ e−Lβ, as a “perimeter law”. Here A is the area
enclosed by a loop and L is the length of the loop. This phase transition is
similar with that for 2D classical Ising model which has global Z2 symmetry.
We know that it has a thermal phase transition between the PM and FM. The
driving force for the disordered PM phase is the “proliferation” of domains,
while in the FM phase the energy of a domain scales with the length of its
boundary.

Furthermore, spatial dimensionality also plays central roles here, just like
that for systems with global symmetry. The 2D version of Wegner model on
a square lattice does not have a thermal phase transition. This can be seen
if it is mapped to a 1D Ising model. What is interesting is that the model
leads to topological order. If we include the gauge terms in it, the model
looks like

H = J1
∑
r

Xr + Jz
∑
�

Z� + Jx
∑
+

X+. (16)
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The phase for vanishing J1 is the toric code, which has Z2 topological order.
On a torus, the ground state degeneracy is 4. This can be seen from the
algebra of four Wilson loop operators, Xx

l , Xy
l , Zx

l , Zy
l , for x, y as the two

directions of the torus. There are 2 species of excitations each created by a
local X or a local Z. Excitations appear in pair and are deconfined so that
they can be separated arbitrarily. The 3D case is the 3D toric code, for which
one type of excitation becomes string or loop-like, just like magnetic flux. It
turns out the Z2 topological order can also describe superconductors, which
we would not explain in details here.

2 Advanced topics: gauging

Now we ask the following question: how to convert a symmetry of being
global and local? This is a process called “gauging” if we convert from
global to local symmetry. The origin of it is still the U(1) case: replace the
derivative ∂µ by Dµ is a gauging. In general, gauging follows a minimal-
coupling rules: use covariant derivative, a proper metric tensor, and avoid
curvature terms. It plays important roles in string theory. Here, instead we
survey its usage in many-body physics, as lattice gauge theory has very close
connection with it.

We have discussed Ising model and toric code above. So the question is:
is there any relation between them, i.e., the global and local Z2 symmetry?
It turns out there is. Consider the 2D square lattice Ising model

H = Jx
∑
r

Xr + Jz
∑
r

ZrZr+1 (17)

for onsite kinetic terms Xr and 2-body potential terms ZrZr+1. The global
symmetry is

∏
rXr. It has the symmetry-breaking FM phase and non-

breaking disordered PM phase. Now to gauge it, we need to add gauge
variables, and they shall be on each link: here they are also spins. There
should be 2 types of excitations just like Maxwell case: electric and magnetic
fields. The metric is flat so no worry about covariant derivative. The sym-
metry becomes local, but shall it involves both matter and gauge fields? It
seems it is to ensure a coupling between them. Denote gauge spins as τ i. It
is not hard to find that the term ZrZr+1 can be replaced by Zrτ

xZr+1, the
symmetry term is Xr

∏
〈r〉 τ

z, for 〈r〉 as the four edge neighbors of r. The
term Xr shall remain since it commutes with the symmetry. We also need a
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Gauss law 4-body term
∏

� τ
x for each unit cell. With these terms, we arrive

at the gauged model

H = Jx
∑
r

Xr + Jz
∑
r

Zrτ
xZr+1 + (18)

Js
∑
r

Xr

∏
〈r〉

τ z + Jg
∑
�

∏
�

τx.

Now when the matter field is in the PM phase, Xr has a classical value so
we can delete it from the symmetry term, and Jz terms vanish. The matter
field and gauge field actually decouples. So we just obtain the toric code!
From the FM phase instead, the Jx terms vanish, and the Jg terms become
redundant since the Jz terms will reproduce them. So we only have the Jz
and Js terms, and this model now defines the so-called cluster-state phase.
Recall that a cluster state is obtained by replacing local X operators by
X

∏
i Zi for some patterns of

∏
i Zi. For a 1D cluster state, these so-called

“stabilizers” are Zr−1XrZr+1. The gauged model from the PM phase is a
system of coupled 1D cluster wires. This phase is often called a Higgs phase
with massive gauge fields. This can be seen by noting that the Jz terms are
nothing but the mass terms of gauge fields.

There are also interesting thing about symmetry or Wilson loops: on a
torus, the toric code breaks loop symmetry Xx

l and Xy
l , resulting the 4-fold

degeneracy; however, the cluster phase preserves these symmetry, hence the
ground state is unique. It is said that the toric code has topological order
while the cluster state has 1-form symmetric (symmetry-protected) order.

One may wonder: how about 1D case? Can we gauge 1D Ising model?
Sure, we did it and we find the PM phase is gauged to a FM phase of the
gauge field, and the matter field decouples, and the FM phase is gauged to
the 1D cluster phase, which is gapped.

So, what we learned from gauging? Probably it is not about the symmetry
itself, instead, it is the emerging symmetry (Wilson loops) from it. They
are a so-called high-form symmetry, the understanding of which is still not
complete yet.

3 Relevant theory: standard model

We turn to the major impact of gauge theory: the standard model of par-
ticle physics which is based on Yang-Mills theory and Higgs mechanism.
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Currently, it contains the electroweak unification theory, and QCD for the
strong interaction. Here we survey briefly how the electroweak theory works.

The electroweak theory starts from gauge theory with SU(2) × U(1), and
via Higgs mechanism breaks down to U(1). Initially, there are 3 massless
gauge fields W a

µ (a=1,2,3; µ=x,y,z) from SU(2) and 1 massless field Bµ from
U(1). They will give rise to 1 new massless gauge field, which is photon, from
the combination of U(1) and the U(1) subgroup of SU(2), and 3 massive gauge
fields for the weak interaction. In addition, there has to be a Higgs field, H,
which will generate mass.

The Higgs field has 2 components since it is acted upon by the gauge
group. It will obtain a non-zero value on ground state (vacuum), and this
symmetry breaking will reduce the symmetry to U(1). This is just like su-
perconductors, with the Cooper pair field operator φ as the Higgs field. The
model takes this form

L = −W a
µνW

aµν −BµνB
µν +DµH

†DµH − V (19)

for a Higgs potential V . The first 3 terms are taken as free parts, and the
V term will replace H by its vacuum value, H0. Usually, it is taken as
H0 = [0, h]t for a real number h, which can be achieved by tuning the gauge
redundancy. The consequence is profound. First, H0 is invariant under
diagonal phase operators in SU(2), i.e., U(1) rotations, and this must be
from a combination of the original U(1) and the U(1) subgroup of SU(2).
This predicts the existence of photon. The term with DµH give mass to
other gauge fields, with

DµHα = ∂µHα + ig2σ
a
αβW

a
µHβ + ig1BµHα (20)

as a covariant derivative. Here σa are Pauli matrices, g1, g2 are coupling
parameters. The Weinberg mixing angle, θW = arctan g1

g2
, has been exper-

imentally confirmed to high precision with sin2 θ ≈ 0.23. As this is too
technical, we would not explain the details.

The SU(3) Yang-Mills shows different features. Different from SU(2), the
fundamental irrep 3 is not real, and it has the conjugate 3̄. This leads to 3
quarks and 3 anti-quarks. As the adjoint irrep 8, there are 8 gluons. The
two central features of QCD are asymptotic freedom and quark confinement.
The asymptotic freedom says at high energies quarks interact weakly, and
the quark confinement says at low energies quarks interact strongly. These
phenomena are due to gluons which interact with themselves and quarks.
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Finally, we survey the elementary particles in the standard model. As
messenger bosons, there are photons γ for electromagnetism, Z and W for
weak interaction, and the Higgs boson H, and gluons for strong interaction.
As matter fermions, there are electrons e, muon µ, tau τ which are charged,
and electron neutrino νe, muon neutrino νµ, and tau neutrino ντ which are
neutral. The standard model is well established, but there are still lots of
puzzles, see below.

4 Frontiers

In this brief survey, we did not cover a lot of important subjects, such as
the second quantized form of gauge theory, duality, path integral, renormal-
ization, and Feynman diagram. Many problems of particle physics are due
to the difficulty to compute Feynman diagrams, which mainly works in the
spirit of perturbation theory. A more powerful approach especially for strong
couplings is highly expected.

There are lots of open problems of the standard model. We refer to
Wikipedia for a list of them. These include the explanation of 3 generation
of matter, matter-antimatter asymmetry, consistency with general relativity,
etc. At the heart of the standard model, to prove the Yang–Mills theory is
gapped for any compact Lie group is still an open problem. This is of great
mathematical interest. This relates to a proof of the quark confinement
and asymptotic freedom. Supersymmetry, i.e., duality between fermion and
boson, is also a frontier relating to string theory.

Based on the framework of lattice gauge theory, quantum simulation is a
promising endeavor. Small scale quantum simulators, with about 100 qubits,
are within reach in a few years. These simulators can solve some problems
faster than the best supercomputers in the world, although their precision
may be limited, but good enough. Combining with classical algorithms, their
performance can be enhanced. They can be used to study phase transition,
dynamics, thermalization, and simulate particle scattering, and many oth-
ers. This approach is expected one day to substitute high-energy large-scale
colliders for some tasks.
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5 History, people, and story

A story we had to mention is that Pauli, a geek, also formulated Yang-Mills
independently but did not publish his result, since he found that the gauge
bosons are massless. We also remember that he discovered the notion of
spin, but did not publish the result since he found that a spinning particle
might violate special relativity! What we learn from his story? Probably he
is too critical about others and also himself; but we know these stories after
all because he discussed with lots of people! It is important to let colleague
know your results, whether with a publishable paper or not.

For the establishment of standard model, many conceptual breakthrough
was made by individuals. Meanwhile, experiments are often large collabo-
rations. This is because high-energy experiments are sophisticated and also
generate huge amount of data. While deep physical insight is often grasped
by a genius first, such as G. ’t Hooft and E. Witten, then accepted by a
small group of experts, and then gradually becomes popular in the research
community. This is partly due to the toughness of path integral, renormal-
ization, etc, but also the vagueness of the underlying physics, which is still
unclear at present.
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Concept map
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