
Quantum Error Correction Codes

Dong-Sheng Wang

April 21, 2021

Definition. A quantum code is usually defined by a linear encoding
isometry V : Hl → C ⊂ H, and an error correction code is a triple
(V,N ,R), which requires the ability to fully recovery any state |ψ〉 ∈ C
by a recovery channel R after a prescribed noise channel N acting on
the code space C.
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Abstract

We explain quantum codes and fault-tolerant quantum com-
puting. In order to perform reliable quantum computing, we
have to use qubits encoded in error-correction codes. We first ex-
plain the basics of quantum codes, including encoding isometry,
error correction and detection, code distance, encoding bounds,
logical gates, recovery channel, etc. Then we introduce stabi-
lizer codes and describe some examples. Next we explain how
to use quantum error-correction codes for quantum computing,
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with a notable candidate: color code. Finally, we survey other
ways of dealing with decoherence and some frontiers, and also
stories.

1 Minimal version

1.1 Opening

The subject of quantum error correction (QEC) has been de-
veloped for two decades, just a little bit shorter than quantum
computing itself. QEC is the most crucial part for quantum
computing since it ensures the computation to be reliable, oth-
erwise the output of a computing device is just crap. So every
quantum computer scientist has to understand QEC and the
framework of fault-tolerant quantum computing.

The very starting idea is encoding, which also lies at the heart
of all classical communication, computing, cryptography, and
relevant fields. The encoding can be used to protect against
noise or enemy. Encoding refers to the process to use redun-
dancy to enhance the robustness of information against noises
(errors). For instance, we can encode 0 as a string of 0s and 1 as
a string of 1s, so that flips of a few bits do not affect the infor-
mation we encode. Information processing occurs in an encoded
way: first encode, then do operations you want, then decode,
and finally readout the results you need. Furthermore, encoding
also occurs in natural physical systems: macroscopic observable
is encoded in microscopic details of statistical systems, the inte-
rior bulk property of an object can be encoded in its boundary,
etc. A good encoding often connects with appealing physics,
and finding good codes of course also requires skillful work.
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Figure 1: The explicit encoding vs. implicit encoding. An encoding isometry
V is often embedded in a unitary U .

1.2 Basics

Let’s first explain what an encoding is. For quantum codes, we
often use linear encoding defined by an isometry V : Hl → C ⊂
H which satisfies

V †V = 1, V V † = P, (1)

for P as the projector on the code space C ⊂ H. Also we require
dim(H)>dim(Hl) so that there are redundancy to encode states.

Which one is more fundamental, V or P for a code? It turns
out both are okay. A code defined by V is explicit since it shows
the map |i〉 7→ |ψi〉 with V =

∑
i |ψi〉〈i| for an orthonormal

basis {|i〉} of Hl, and a code defined by P is implicit since the
map |i〉 7→ |ψi〉 is only described classically, and it still needs
to construct V separately. For instance, the code |0〉 7→ |000〉,
|1〉 7→ |111〉 which encodes a qubit into three qubits is explicitly
defined by its encoding circuit. The code |0〉 7→ |n = 0〉, |1〉 7→
|n = 1〉 which encodes a qubit into number states of an oscillator
is implicit since the encoding circuit is often not specified. See
figure 1 for their differences. In general, for explicit encodings
the physical space H contains the original logical space Hl, and
for implicit ones it is not the case.
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Now we shall discuss noise operators, or called error opera-
tors, which can disturb information in C by causing leakage to
C⊥ = H	C or making changes in C itself. Do we have to correct
the noises? We don’t have to if we do not need the information
to be fully protected, depending on the tasks. For instance,
the noises may be weak for some communication channels, so
codes can be designed just to protect against particular types
of noises so that the fidelity of output can be high enough. In
other words, we do nothing for recovery. However, for error cor-
rection we need to apply a recovery channel, R, and also for
error detection we need to apply the projector P onto the code
space.

For an error operator A, the simple correction scheme (i.e.
recovery) is to apply its inverse A−1. In quantum theory, we
often consider unitary operators or quantum channels defined
by a set of Kraus operators. One central result of QEC is that
given a code C and a set of error operators {Ei}, which shall
form a channel N with condition

∑
iE
†
iEi = 1, the errors can

be corrected iff
PE†iEjP = cijP (2)

for [cij] as a non-negative matrix, known as coding state ρC. The
recovery is not by Ei but linear combination of them. Namely,
the coding state ρC can be diagonalized with eigenvalues da, and
the condition will become

PF †aFbP = daδabP. (3)

The recovery channel is defined by a set of operators Ra =
1√
da
F †a . It can be easily checked that

RN (ρ) = ρ, ρ ∈ C. (4)
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The condition above means that different Fa acting on P leads
to orthogonal spaces so they can be distinguished.

Quantum error detection (QED) can be viewed as a simple
version of QEC. The condition for QED of a channel is

PEiP = eiP, (5)

which is a weaker condition than QEC. This means that a code
can detect more errors than correct them.

A crucial property of QEC is that if a code corrects a set {Ei},
then it also corrects any operators in the linear span of {Ei} by
the same recovery R. So, strictly speaking, the correction is not
about a single channel; instead, it is about an operator space,
which covers many more channels. This “linear-span” property
has profound consequences. For instance, usually we consider
codes using many qubits, and we only need to consider errors
on each qubit, and the spanning qubit errors are just the Pauli
operators: X, Y, Z. Correcting Pauli errors will guarantee the
correction of other error operators. As such, we often speak of
“number of errors”, which refer to the weight of arbitrary errors
of the form ⊗nAn for n as labels of qubits.

The opposite of noise operators are logical operators, also
known as gates. Here we only consider unitary ones. A unitary
U acting on H is logical iff

[U, P ] = 0. (6)

That is, it preserves the code space. The set of logical opera-
tors forms a group, usually SU(d), with the code space C as a
representation of it. There are also hybrid operators which are
both logical and noisy: they lead to logical operations yet with
leakages. Hybrid operators are dangerous for a code since they
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are not correctable, and they can determine the actual distance
of a code.

The distance of a code dc is defined as the minimal “size”
of operators that can lead to a logical operator. The notion of
distance refers to distances among codewords |ψ〉 ∈ C. Higher
distance means the code is more robust against noises. Here
“size” can be measured by various quantities depending on the
contexts. There are two basic settings: when H is of the form
⊗nHn or the form ⊕nHn. We often consider weight of opera-
tors with tensor-product forms, and power of operators for the
other case. For instance, the weight of a tensor-product of Pauli
operators ⊗nσn is the number of non-identity σs in it. Now
given a distance dc, it is clear to see (from the QEC condition)

it means (dc − 1) errors can be detected, while (dc−1)
2 errors can

be corrected.
Let’s focus on codes with multiple qubits which are the com-

mon setting. A code of n qubits encoding k logical qubits with
distance d is denoted as [[n, k, d]], the double-bracket meaning
“quantum” but here we use the simple notation [n, k, d]. A nat-
ural question is: are their any relations among n, k, d? It turns
out there are some tradeoffs from coding bounds, and the well-
known ones are Hamming bound, Singleton bound, and Gilbert-
Varshamov (GV) bound. The Singleton bound says that

n− k ≥ 2(d− 1), (7)

while the classical version of it is n−k ≥ (d−1). The difference
comes from the fact: for qubits we need to correct both X and
Z, but for classical bits we only need to correct Z. To be precise,
let’s see how to prove it. Consider an orthonormal basis {|i〉}
for k qubits and the Bell state |Φ〉 = 1√

2k

∑
i |ii〉 of 2k qubits,

6



and then apply the encoding isometry V to half of them. We
now have |Φ′〉 = 1√

2k

∑
i |i, φi〉 for k + n qubits. Divide the n

qubits to groups of d − 1, d − 1, and n − 2(d − 1) qubits, with
label A, B, and C. Label the other k qubits as R. Now the
code distance d means ρRA = ρR ⊗ ρA, ρRB = ρR ⊗ ρB. Using
entropy relations SAC ≤ SA + SC , SBC ≤ SB + SC , we will get
k = SR ≤ SC ≤ n− 2(d− 1). In other form, it is

k

n
≤ 1− 2

(d− 1)

n
. (8)

The Hamming bound and GV bound arise from a counting of
distinct errors, which is, in order, an upper bound

k

n
≤ 1− (

d

2n
) log 3− h(

d

2n
), (9)

and a lower bound

k

n
≥ 1− (

d

n
) log 3− h(

d

n
), (10)

with h(x) the binary entropy of x. The Hamming upper bound
is more tight than the Singleton upper bound, but the later
also applies to degenerate code, which means some errors are
equivalent and can be corrected by the same recovery scheme.
We will show below that topological codes are highly degenerate,
and this greatly benefits the design of good codes.

1.3 More: stabilizer codes

For multi-qubit codes, a large class of codes is the stabilizer
codes, for which a code projector P is defined from a set of so-
called stabilizers {Si}, which are low-weight product of Pauli
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operators and commuting. There is a nice group-theoretic de-
scription: the stabilizers form an Abelian group, the stabilizer
group, and for a code [n, k, d], there are (n − k) stabilizer gen-
erators. The errors to consider are also low-weight product of
Pauli operators, and correctable errors anti-commute with some
stabilizers. The anti-commutation pattern forms the syndrome,
and for non-degenerate stabilizer codes each error has distinct
syndrome. A signature of non-degenerate stabilizer codes is that
the weight of stabilizers have to be larger than d since otherwise
the product of two errors EaEb can be a stabilizer, then Ea and
Eb cannot be distinguished (see the QEC condition). In this sec-
tion, we will use examples to reveal features of stabilizer codes.

From Singleton bound, the minimal n to encode a qubit with
distance 3 is 5. This is the so-called five-qubit code, or XZZX
code since the stabilizers are XZZX1, 1XZZX, X1XZZ,
ZX1XZ, ZZX1X. It is non-degenerate. Each stabilizer can be
split as a product, e.g., XZZX1 = (XYX11)(1XYX1), with
XYX11 as a logical operator. By passing, this is actually from
the cluster state. The code is implicit since we do not know the
encoding circuit. To prepare the code, we can prepare a five-
qubit cluster state by expressing it as a matrix-product state
with periodic boundary condition. We can also use XXXXX
as a logical operator which anti-commutes with XYX11.

More interesting codes will involve more qubits. We do not
intend to review all known stabilizer codes since there are too
many. Below we survey some types of them, and these types
may overlap.

• CSS codes: all stabilizers are product of X or product of Z.
A CSS code can be constructed from two classical codes.
An example is Shor’s 9-qubit code, with stabilizers of the
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form ZZ and ⊗nXn, similar with the Hamiltonian of Ising
model.

• topological (or local) codes: the physical support of H is
on a regular manifold and the support of each stabilizer
is geometrically local and a constant. Logical gates are
topological. Examples are toric code and color code, which
physically are spin liquids.

• subsystem codes: the code space C is defined by a set of
non-commuting local gauge operators, while a set of semi-
local stabilizers also exist. The space has two parts C =
T ⊗G, with T as the true code space and G as a gauge space
that does not encode information but participate the error
correction. An example is Bacon-Shor code, also physically
known as the quantum compass model.

• finite-rate LDPC codes: the encoding rate r = k
n stays

finite as n → ∞, and LDPC means low-density parity
check, namely, each qubit is involved in a constant num-
ber of stabilizers, and each stabilizer involves a constant
number of qubits (but may not be local). An example is
the hypergraph-product codes.

The topological codes are famous since they are robust against
many kinds of local noises. However, the redundancy is huge and
this is revealed from the bound

kd2 ≤ O(n), (11)

on 2D codes. It means the encoding rate r goes to zero if the
distance d increases with n. It’s beneficial to see how this is
proved. First, it divides the system into three parts: correctable
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parts A and B, with the same size, and their boundary C that
is not correctable. This is similar with the proof of Singleton
bound, and it shows k ≤ n

R2 for R as the linear size of A and
B. Next it shows that R ∼ d which is not hard to see. The
proof is consistent with area law of entanglement which says that
the entropy of a region scales with its boundary size, namely,
information of a bulk is encoded in its boundary.

Logical gates on topological stabilizer codes are also con-
strained. First recall that Pauli operators X, Y, Z with ±i1 form
a group, called Pauli group, P , which is a projective represen-
tation of the Klein-four group Z2×Z2. This extends to n-qubit
case as Pn. Now the so-called Clifford hierarchy is defined as a
set of sets, and each set with integer label k > 1, the ‘level’, is
defined as

Ck = {U |UPU † ∈ Ck−1,∀P ∈ Pn ≡ C1}. (12)

The C2 is known as Clifford group, which contains Hadamard
gate H, phase gate S, CNOT, and their products. Consider
logical gates from finite-depth local unitary (FDLU) operators,
which do not change the topology of the code. It is shown that
D spatial topological stabilizer codes can support FDLU logical
gates from Clifford hierarchy for levels at most D. The proof is
very interesting and it uses a partition of the system into D+ 1
correctable regions, Λj, different from the partition for the proof
of encoding rate bound above. See figure 2 for a comparison.
Consider a collection of D different Pauli logical operators Pj,
and require the support of Pj does not overlap with Λj. This is
always possible. The idea is to consider the commutator

Kj = P †jKj−1PjK
†
j−1 (13)

for K1 = UP1U
† with any FDLU U . Different Kj has different
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Figure 2: The partition for a topological stabilizer code for the proof of
encoding rate (left) and logical gates (right).

supports, and it shows the support of KD is the last one: ΛD+1.
So logically KD = ±1 and it is easy to show U ∈ CD.

Physically, it is not easy to understand the meaning of Kj.
But we can treat gates in CD and lower as a set of order param-
eters that define the topological order of the code since FDLU
operations shall not change the topological order. For instance,
for the toric code the FDLU logical gates include: Pauli gates
which are loops, H gate and CNOT which are depth-one global
operations, S gate which is slightly more complicated. The Pauli
loops define the topological order of toric code, which has ground
state degeneracy as four robust against local perturbations. The
H gate, which maps between X and Z, is a duality of the code
that preserves the topological order. The same holds for S gate
which maps between X and Y . The CNOT gate couples two
toric codes together while still preserves the topological order for
each of them. The above result shows that higher-dimensional
topological order needs more order parameters to characterize
it, not just the Pauli operators.
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2 Advanced topics: fault-tolerant quantum

computing

Now let’s move on to discuss how to use quantum codes for quan-
tum computing. This is the framework of fault-tolerant quan-
tum computing (FTQC), believed to be the inevitable model of
reliable quantum computing. We will analyze the notion of uni-
versality, what codes to use, the QEC algorithm, how to perform
gates, and how to carry out computing tasks.

A computing process of FTQC looks like this

G1 · QEC · G2 · QEC · · · (14)

for G as various gates. We omit the initial state and final read-
out. The first issue is about universality, namely, what shall we
achieve in FTQC. Universality means that any gate U ∈ SU(2n)
for any n can be realized efficiently to arbitrary accuracy ε. The
efficiency means the cost of quantum computing, mainly the
number of primary gates, scales as a polynomial of log 1

ε and n.
The accuracy ε can be quantified by operator norm ‖U − U ′‖
or its equivalence which does not depend on initial states. The
key point to note is that the accuracy can be arbitrarily small,
otherwise it is not universal.

To approximate U , which contains continuous rotation an-
gles, we shall not use continuous-variable gates; instead, we use a
few gates with fixed form, and these gates are “digital”. Namely,
there exists universal gate set so that any U can be approximated
well by a sequence of gates from a universal set. To prove the
universality of a gate set is nontrivial, but here we only list a few
examples: the set {H,T,CZ}, {H,CCZ}, {H,CS}, for CZ as
controlled-Z, CCZ as controlled-CZ, CS as controlled-S, with
S as phase gate. Given U ∈ SU(2n), finding a sequence form
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of U ′ is a classical optimization problem that has been widely
studied. At the end, all gates in FTQC shall be these primary
gates from universal gate sets.

Note the gates above are logical and we still need to figure out
how to realize them physically. Recall that the logical part of U
is PUP . The simplest form of gate is the so-called transversal
gates

U = U1 ⊗ U2 ⊗ U3 · · · (15)

with each Un sandwiched by QECs on the site n. However, there
is a no-go theorem says transversal gates cannot be universal;
probably because it is too good. An extension of it is the FDLU
which was mentioned above. These gates do not spread out
errors too far due to the finite depth so do not jeopardize QEC.
However, finding FDLU logical gates is difficult given a certain
code.

At this point we shall mention the anyonic quantum com-
puting, which realizes logical gates by braidings of non-Abelian
anyons. Braidings are linear-depth local unitary circuits, so they
can spread out local errors to be nonlocal ones. QEC needs to
be done after each braiding to ensure fault tolerance, and this is
not an easy task in practice. We will review anyonic quantum
computing separately.

Now for codes and QEC, which codes to choose for FTQC?
There shouldn’t be a unique answer since different codes have
different merits. We can just use a single code if it is powerful
enough, but so far no such code is known. So we have to use
combinations of codes. Some primary ways are as follows:

• Concatenation: use encodings in sequence. e.g., Shor’s
code.
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• Switching: use encodings alternatively. For stabilizer codes,
this means to use stabilizer measurements to convert be-
tween codes.

• Augmentation such as state injection: use additional re-
sources beyond the codes. e.g., magic-state injection for
the T gate which can be used for toric code FTQC.

The errors encountered in different schemes are different, so the
QEC are also different. However, a common thing is the physical
error rate rp has to be below a threshold, r∗p, so that the logical
error rate rl can be made arbitrarily small by increasing the
distance of the code. This is the content of the threshold theorem.
Just like the classical repetition code, the noise on each bit shall
not be too strong in order for the code to be reliable.

The QEC procedure becomes tedious for large codes such
as topological codes. A decoder is a classical algorithm which
is necessary to decide the recovery scheme from the syndrome.
For degenerate codes, there could be various distinct decoders
and finding optimal decoders is nontrivial. Decoders are often
used in numerical studies.

A well-studied setup for FTQC is based on (gauge) color
code. We will not discuss the details here but the scheme is
quite simple. Color codes are a family of 3D CSS codes and
there is a color code with transversal CZ and T gates, but not
H gate. The idea is to use code switching to a gauge color code
which has transversal H gate. However, the codes are 3D and
the weights of stabilizers are not so small. Compared with toric
code, no magic state is needed which is a great advantage of
color codes.

Finally, we have to know how to perform a computing task.
For short, quantum computing is just a sequence of gates, namely,
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a quantum circuit. However, we need to know how a circuit is
designed and how it performs. This often requires some clas-
sical algorithms and this leads to the classical-quantum hybrid
paradigm. There are two types: a) loop-free: there is a classical
algorithm A that design a quantum circuit Q. b) feed forward:
there is a classical algorithm A that can change a quantum
circuit Q depending on the measurement output M from Q.
Quantum machine learning is such an example. In addition, we
can also envision a fully quantum paradigm, but this is not well
understood yet.

3 Relevant theory: dynamical decoupling, er-

ror mitigation, randomized benchmarking

A universal FUQC is very powerful, and there is no hope to build
one within decades. Just like the classical case, there could be
various types of non-universal computing devices that are also
useful, such as simulators, detectors, sensors, calibrators, etc.
These devices do not require powerful QEC but still can have
some ability to fight against decoherence or noises. Here we
sketch some approaches.

We can try to suppress errors instead of correcting them. A
technique is known as dynamical decoupling (DD), which uses
rapid time-dependent controls and relies on Magnus expansion
of time-dependent evolution. The external noises is expected to
average out when the control rate is faster than the time scale
of noisy processes. The noisy process L together with the DD
scheme D shall be close with a unitary process U . For quantum
computing, DD is used to extend the lifetime of qubits while
compatible with execution of gates.
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Instead of dealing with evolution, the error mitigation (EM)
technique focuses on observable. Expressing the ideal state as
a linear combination of noisy ones, the ideal observable can be
approached by taking linear combination of noisy ones. This
requires to run the noisy circuit many times, each with different
noise configurations. The number of samples is argued to be
efficient with the desired accuracy of observable.

Errors do not only arise from external noises. Imperfect phys-
ical operations to realize gates also introduce in errors. In QEC
we often assume this kind of control errors can be treated as
external errors, but this is not the case for other settings. A
technique to calibrate and improve gates is known as random-
ized benchmarking (RB). The basic idea is to use random cir-
cuits composed with random gates that would do nothing if the
gates were perfect, and then measure observable. From these
samples it can extract the average gate infidelity. Furthermore,
the gate operations may depend on a few parameters, and an
optimization is possible based on RB to increase the gate fidelity
by tuning the parameters.

4 Frontiers

There are lots of frontiers, although the first-generation quan-
tum computers (or simulators) are already in use, e.g., moderate-
scale optical lattices, superconducting qubit networks, linear op-
tics networks, etc. These simulators are not fault tolerant.

A frontier is to find better LDPC codes, as hinted by the
coding bounds. As we know, CSS codes are combinations of
classical codes. So it is natural to consider combinations of
quantum codes. Some recent examples are homological prod-
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uct codes, hypergraph product codes, fiber bundle codes, etc.
The goal is to have both the encoding rate k

n and distance d
increasing with the system size n. These codes are mainly con-
structed mathematically, and it is not clear yet what physical
phases of matter they correspond to (probably gapless phases
with long-range interactions). Also FTQC with them just begin
to develop.

A subject we did not discuss is approximate codes which do
not fully recovery logical states. This paradigm lies in between
the FTQC and noisy computing. There are some approximate
codes such as GKP code, VBS codes, holographic codes, etc, but
a full theory of quantum computing with approximate codes is
not developed yet. These codes do not obey the standard coding
bounds, but on the other hand, the accuracy of such computing
is limited.

Anyonic quantum computing is a setup people are trying to
realize in labs, and there is a hope to achieve this via Majorana
systems in a decade. Although some non-braiding operations
are needed to achieve universality, this system could be better
than others such as superconducting computers.

A theoretical subject is about self-correcting codes. This is
motivated by the classical example: 2D Ising model. We can en-
code a classical bit in the magnetization, which is robust against
thermal noises below the critical temperature Tc. The encoding
is a subsystem code, since we only need the sign of magnetiza-
tion instead of its values. The 4D toric code is a self-correcting
quantum code, which is physically a spin liquid, but clearly we
cannot realize it easily in 3D. There is a hope to find new ones
in fracton orders or finite-rate LDPC codes, which physically
rely on non-thermal, glassy, or other mechanism instead of gas
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or liquid mechanism.

5 History, people, and story

As we mentioned, the subject of QEC starts just a bit late than
quantum computing itself. The stabilizer framework was estab-
lished in 1997 and becomes the main stream of quantum codes.
Probably lots of computer or information scientists think they
are the only kind of quantum codes. Stabilizer states are very
‘classical’, in the sense that they can be efficiently represented
classically, and operations that only change stabilizers to sta-
bilizers can also be efficiently simulated on classical computers.
The errors to deal with are Pauli X and Z, which is just two
‘copies’ of errors instead of one for classical codes. But superpo-
sition of stabilizer states are not stabilizer states anymore, and
this is the origin of being quantum. Physicists are also develop-
ing non-stabilizer codes which are not so intuitive for computer
scientists. Most likely, they will deviate from each other further
away in the near future, dividing the world of quantum codes
into stabilizer and non-stabilizer parts.

The features of topological stabilizer codes were mainly stud-
ied by S. Bravyi, a leading theorist at IBM, around 2010. The
results are, however, mostly negative regarding encoding rate,
logical gates, self correction, etc. However, this motivates people
to look for better codes with topological codes as an ingredient
or mirror. He also works on many other subjects such as quan-
tum algorithms, computational complexity, anyonic quantum
computing, etc all with high-impact results. It is fair to say he
is the kind of genius who is required to be there to clean up the
way in the field of quantum computing, as commonly to be the
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case for any field.
Another phenomena to notice is there are not many Chinese

in the subject of QEC, given the large amount of researchers on
quantum computing. This situation will change gradually since
quantum simulators will prove to be highly limited, and FTQC
seems to be the right choice in the long run.
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