
Quantum Machine Learning

Dong-Sheng Wang

April 21, 2021

Definition. Quantum machine learning is a class of quantum algo-
rithm that uses a quantum training algorithm to train a quantum ma-
chine, which is another quantum algorithm.

Keywords

Data science; automation; machine learning; neuron networks; quantum gra-
dient descent; hybrid classical-quantum algorithms.

Abstract

This is an overview of the emerging topic of quantum machine learning
(QML). We first explain machine learning and some primary types of machine
networks. We then introduce QML, which has not been fully understood yet,
and then compare with the relatively easier task of hybrid classical-quantum
ML, which only uses quantum computing as the subroutine machine.

1 Minimal version of QML

1.1 Opening

Machine learning (ML) is a type of classical algorithm, which deals with
‘big data’, in particular. The key feature of ML is that it has a training

1

stage which is an optimization procedure using sample data to determine the
machine, i.e., the parameters in a neuron network. Compared with building
a neuron network, the training stage is more nontrivial. Just like people
learning a new thing, it is better to learn or grasp the main features, i.e., the
essence, then new problems can be solved after learning.

The neuron network has many parameters such as weights and biases,
while the learning algorithm also has many so-called ‘hyper-parameters’,
which needs to be chosen externally. That is to say, ML is a cascade al-
gorithm that the learning algorithm takes data as input and the (parameters
of the) machine as output, and the machine itself is also an algorithm. It is
exactly the idea of cascade, or automation, that makes ML powerful. Some-
times algorithms used to find hyper-parameters are called ‘meta-algorithms’.
It is not hard to see the training of ML is a kind of meta-algorithm. You
might imagine a multi-level cascade of algorithms, but that went too far.

ML has wide applications in many fields of science, but mainly for ar-
tificial intelligence and big data science. In physics, it has been applied to
statistical physics, particle physics, and also starts for quantum physics. It
shall be treated as a component of computational physics; however, it also re-
veals some physical principles (not very clear yet), and the QML is expected
to boost quantum computing and also quantum physics.

1.2 Basics

Here we analyze the basics of ML. In computer science, algorithms are used
to solve problems. For different problems, the algorithms being used may
appear very different. Is there a sort of universal algorithm that can be used
or tuned to solve different problems? Well, ML is roughly of this kind. A
ML algorithm contains two parts: a training algorithm (teacher) A1 and a
machine (student) A2, which is also an algorithm. The central idea is that
the machine A2 is represented by a sort of universal structure, e.g., neuron
networks, but with tunable parameters, denoted by a vector ~θ. Given a prob-
lem, the trainer A1 is used to find the optimal parameters ~θ by optimizing a
cost function given a large set of data.

Let’s see how to make a neuron network. A neuron is just a function
f(x), and the variable x is not limited to be binary. As the name hinted, it
is designed to mimic the behavior of biological neuron: it is usually parame-
terized by a weight and a bias. But, of course, the formula of neuron is not
unique. Now a neuron network (NN) is just a cascade layered sequence of

2

neurons, with input (output) neurons arranged in an input (output) layer,
and the functional neurons called ‘hidden layers’. If you can only see the
input and output layers, the rest layers are really hidden.

The power of NN comes from the fact that it is universal, meaning that it
can be used to simulate any Boolean circuit efficiently. The idea to prove the
universality is also simple. There exists the so-called universal gate set for
Boolean circuits, these gates include NOT, OR, NAND, etc. The NAND gate
itself is universal, and it is easy to find a neuron to simulate it. Therefore,
NN is a universal computational model.

Let’s call the number of hidden layers as the depth of the network. It is
known that depth-one NN is also universal; namely, a higher-depth NN can
be efficiently simulated by a depth-one NN. We will not review the proof here,
but note that it is quite simple. ML with high-depth NN is the so-called ‘deep
learning’. Higher depth provides another dimension to exhibit the power of
NN, and data structures can be attributed along the depth dimension. For
instance, in the convolutional NN (CNN), the later layers can be viewed as
a kind of coarse-graining of former layers, mimic the idea of renormalization
transformation. Given a big data set, a CNN can learn features of the data
on different ‘levels’, just like a catalog.

We have not explained how the training works. The parameterized NN
is not treated as a black box; instead, it is used explicitly in the training
process and used many times. Let’s see an example: to classify hand-written
letters, which is the most canonical examples of ML. Given a set of samples,
we use a part of it as training samples, and the rest as test samples after the
training. The training samples are altogether denoted as an input vector ~x.
Now, there are two basic ways to proceed: one is called supervised training,
and the other unsupervised. For the supervised training, each sample is
also assigned a correct label, altogether as ~y. Now, the goal of training
is to optimize parameters ~θ of NN, which is a function f(~x, ~θ), so that a

cost function g(~x, ~y, ~θ) is minimal. The space of all possible f is called the
hypothesis space. The cost function g in general is very complicated and
mostly do not have an explicit formula, and it is not guaranteed to be a global
minima. On the other hand, the unsupervised training can automatically
learn features of letters, and then classify them by optimizing a cost function
that will be different from the supervised case.

Given the samples, the training will take a long time. It is in general not
known how the optimization cost scales with the size of the sample set. The

3

primary optimization scheme is the gradient descent (GD) via the so-called
back-propagation method. It can compute the derivative ∂f/∂θi for all θi in

the same layer at the same time. With derivatives, the values of ~θ can be
updated via GD method. The derivatives are computed from the last layer
to the former ones, so it is a back-propagation of information. This can be
proved based on matrix analysis. As we will see later, the quantum analog
of back-propagation is not established yet.

Finally, we mention that there are also other models such as support-
vector machine, Boltzmann machine etc which are then easy to understand.
The Boltzmann machine is usually employed in unsupervised learning to
generate samples according to a certain probability distribution. It is easy to
quantize it as a quantum spin system, with most of them as latent (hidden)
spins. A quantum advantage is expected (but not proved) since quantum
thermalization and tunneling may offer speedup, which is one of the goal of
quantum annealing.

1.3 Main: Hybrid classical-quantum ML

Usually when people talk about QML, what they mean probably is the hybrid
classical-quantum ML, denoted by HML here. This uses a classical algorithm
A1 to train a quantum algorithm Q2. The HML framework agrees with
usual quantum algorithms, which uses quantum computers to solve classical
problems. In HML, the quantum part Q2 replaces the classical NN, and is
expected to show a speedup.

Let’s see how this works. Similar with ML, we have a set of classical data
at hand. In order to use Q2, we have to upload classical data to it. So we
need to design Q2 first. What is the quantum analog of the classical NN?
Well, this is an unsolved problem yet. However, there are two approaches:
one uses quantum circuits, and the other uses tensor network states. A
tensor network state can also be prepared by a quantum circuit by replacing
tensors with quantum gates. So roughly speaking, a quantum NN is just a
parametric quantum circuit. The parameters in it are usually qubit rotation
angles.

Now we can discuss the upload step. This is to encode classical data x
as a quantum state |φ(x)〉. This encoding is called the feature map. It turns
out the map is not unique. An input x = (xi) is a vector of independent
numbers. As we know, a qubit pure state has two real parameters, |ϕ〉 =
cosα|0〉+ sinαeiθ|1〉, so we can encode two xi in it. This is called the ‘qubit

4

encoding’. Another way is to encode xi directly as the amplitude of a multi-
qubit entangled state, which is common in many quantum algorithms. This is
called the ‘amplitude encoding’. We see that the qubit encoding is maximally
local: a xi is carried locally by a qubit, while the amplitude encoding is
maximally nonlocal: a xi is carried nonlocally by all qubits. There are some
tradeoffs between the two methods. Here we only mention one of them.
If the size of x is N , then we can see that N qubits are needed for qubit
encoding, while only logN needed for amplitude encoding, which is a huge
saving of memory! However, the encoded multi-qubit entangled state might
be expensive to prepare on the first hand!

Following the feature map circuit, U(x), we use a quantum circuit W (~θ)
as the quantum NN, followed by some measurement, the outcome of which
will be used in the classical training algorithm Q1. Given the classical data
set, the quantum circuit will be run for many times, with parameters ~θ
adjusted accordingly. How does W (~θ) look like? It turns out there are some
circuit topology to follow. One method is to use sine-cosine decomposition
to represent any U ∈ SU(d) as a sequence of controlled rotations, called
Givens rotations, wherein the locations of entangling gates are fixed, while
qubit rotation angles can be changed. Another method is to use the quantum
circuit for preparing matrix-product states, which has a cascade structure,
and the free parameters in it are also qubit rotation angles.

2 Advanced topics: QML based on GD

Now let’s see how to ‘quantize’ the whole process of ML. This is the truly
interesting part. We have to use a quantum trainer Q1 and a quantum
student Q2, and they need to be combined together in some way.

As Q1 and Q2 are both quantum operations, namely, unitary circuits,
Q2 cannot be the output from Q1 directly. Can they be part of a more
fundamental circuit, Q? A recent method is of this kind. Recall that Q2

contains parameters that need to be optimized. The idea is to treat these
parameters, denoted each as φ here, as the eigenvalues of an operator φ̂.
This is a 2nd quantization! Obviously, one has to use harmonic oscillators or
even quantum fields to achieve this! Leaving this aside, we can now have a
hyper-system with operator φ̂ and its conjugate, π̂, and design a Hamiltonian
that will control the evolution of φ, hence the circuit Q2. If H2 denotes the
Hilbert space for Q2, then we need a new Hilbert space Hφ for the quantized

5

hyper-parameters. The dimension of Hφ is infinite. The coupling between
the two spaces is due to the gate

U =

∫
dφ |φ〉〈φ| ⊗ U(φ), (1)

which appears succinct while may be very hard to realize. It is likely a cou-
pling between a discrete-variable and continuous-variable quantum systems.
This will parallelize the action of U(φ) for all values of φ. Now the learning
algorithm is defined by a Hamiltonian

H = µπ̂2 + ηV (φ̂), (2)

and a learning step is a short-time evolution eitH ≈ eitµπ̂
2
eitηV (φ̂). the choice

of parameters µ, η may need a meta-algorithm, or just some meta-knowledge.
The potential term eitηV (φ̂) will shift π̂ by ∇V (φ̂), and the kinetic term eitµπ̂

2

will shift φ̂ by π̂. This omits higher order terms in η. The operator V (φ̂)
is nothing but the cost function, which is now an operator serving as the
potential. So a learning step will change the parameters according to the
gradient of the cost function, just like the classical case.

How does the cost-function operator work? It is from the product U †eiηLU ,
which is the conjugate of the coupling gate U on an evolution, which acts
on the space H2. Now the magic occurs: if we choose η, which is called the
learning rate, very small, then this evolution will not generate entanglement
between the spaces H2 and Hφ; instead, it is approximated by a pure evolu-

tion on the space Hφ, with an effective Hamiltonian, denoted as V (φ̂). This
is the origin of the cost-function operator. It is said that the effect of eiηL on
H2 is ‘kicked back’ to the parameter space Hφ. This process is a bit similar
with the so-called weak measurement protocol: if you use a device to measure
a quantum system weakly, then there will not be entanglement between the
device and the system; instead, the device may get a kick by the system,
which will read out the measurement outcome.

The above sketched method works in principle. However, it is not clear
how good it is. Actually, it appears very cumbersome since the learning has
to be done very slowly, very close to an adiabatic process. The entanglement
issue mentioned at the beginning of this section is avoided simply because the
learning is almost adiabatic. It is not clear if other methods can do better, or
if there are some fundamental reasons for quantum learning to be adiabatic.

6

3 Most relevant theories: optimization

Here we analyze some optimization methods since the training stage of ML
heavily relies on optimization. Optimization is a big research area in com-
puter science. In quantum computing, the study of optimization problems is
not that popular. Instead, popular ones are group problems, linear algebra,
quantum simulation etc.

A seminal approach for optimization problem is the adiabatic quantum
computing (AQC). The idea of AQC is to encode the solution of a problem
into a target state |ψ〉, which is the unique ground state of a Hamiltonian
H(t) at a special value of t. The model H(t) usually takes the form

H(t) = (1− t)H0 + tH1 (3)

for t ∈ [0, 1] for simplicity. Note here t does not need to be time itself;
instead, it could be any variable that depends on time. An algorithm uses
the adiabatic evolution of H(t) which starts from the ground state of H0

and ends up with the ground state of H1. The model H(t) is assumed to
be gapped so that the state will not jump to other excited states during the
evolution. A seminal example of AQC is quantum annealing, which we will
not introduce it here.

As adiabatic process is not easy to realize, we can try to mimic it. Re-
cently a quantum approximate optimization algorithm (QAOA) is proposed
which can simulate adiabatic process. The QAOA is a hybrid algorithm in
which a classical optimization is used to optimize the parameters of a quan-
tum circuit, which is the alternating Hamiltonian evolution eit1H1 and eit2H2 .
The term H2 is the cost-function operator, which is measured at each run
of the circuit, and the outcome is feedforward to the classical optimizer to
adjust the parameters t1 and t2 (and also others). The goal is to minimize
the value of H2, which is the cost. We see that the role of the quantum circuit
is to produce the value of the cost, and this may have a speedup compared
with classical circuits. We could apply QAOA to the training stage of ML,
and this is expected to demonstrate the ability of small quantum computers
to boost ML.

7

4 Frontiers

Here we discuss several hot topics in the field of QML. First, the classical
ML still has lots of space to improve. For instance, one problem is that
the learning slows down as the training goes on. This is somehow analog
with people: our interest on new knowledge also decays as you know more.
However, this could be improved by adjusting the learning process. How to
improve the learning process is a big topic, and the meta-algorithms is one
of those schemes.

Another direction is to find and prove speedup for HML. This will likely
dominate the field of QML, although it is not fully quantum. A fully QML
will need thousands of qubits, which could not be realized in a decade. Cur-
rently, the concept of quantum NN is more or less established. Future work
of HML applied to real problems will need massive numerical simulations.
This will benefit some fields in physics with big data such as particle physics.

The next frontier is of course to understand the fully QML in theory.
The method we mentioned above uses a somehow 2nd quantized system to
train a 1st quantized system. This should not be the only way. A different
approach can encode a quantum process into quantum states, and treat the
states as the output of the training algorithm. Whether this works or not
needs further study.

5 History, people, and story

The idea of neural networks was created very early in the 1950s, while the
real progress was made around 2000. With supercomputers, AlphaGo trained
by deep learning beat world’s top Go players. And the three key figures, Y.
Bengio, G. Hinton, and Y. LeCun won the 2018 Turing Award. This greatly
boosts the field of artificial intelligence.

Quantum computing also blooms around 2000, while until now there still
has not been a quantum computer that can solve real problems much faster.
Maybe the main reason is that quantum computing is a totally revolutionary
theory, and people do not know what are the problems that suits it. In this
regard, QML is one candidate.

There was a hope recently that HML may have a speedup for recommen-
dation problem, but this was shoot down by a teenager E. Tang, who finds
a fast classical algorithm comparable to quantum ones around 2018. She got

8

to work on this as a project assigned by her supervisor S. Aaronson. The
background is that HML based on quantum linear-system solver is expected
to have an exponential speedup, but this is not proven. This is very hard to
prove. Instead, Tang found an efficient quantum-inspired classical algorithm,
which is fairly simple. So we learn that it is so important to work on the
right problem at the right time with the right people.

A bit more about the reason. Quantum linear-system solver may have
exponential speedup for processing data, but once it has to load or read data,
the speedup is lost. This appears as a limitation of quantum algorithms,
while also raises the question: will the fully quantum ML be better and also
suitable to solve real-world classical problems?

References

• M. Nielsen, Neural networks and deep learning, 2015.

• I. Goodfellow, Y. Bengio, A. Courville, Deep learning, 2016.

Concept map

9

