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Abstract
Quantum computing has been proven to be powerful, however, there are still great challenges for

building real quantum computers due to the requirements of both fault-tolerance and universality. There

is still no systematic method to design fast quantum algorithms and identify the key quantum resources. In

this work, we develop a resource-theoretic approach to characterize universal quantum computing models

and the universal resources for quantum computing.

Our theory combines the framework of universal quantum computing model (UQCM) and the quan-

tum resource theory (QRT). The former has played major roles in quantum computing, while the later

was developed mainly for quantum information theory. Putting them together proves to be‘win-win’:

on one hand, using QRT can provide a resource-theoretic characterization of a UQCM, the relation among

models and inspire new ones, and on the other hand, using UQCM offers a framework to apply resources,

study relation among resources and classify them.

In quantum theory, we mainly study states, evolution, observable, and probability from measurements,

and this motivates the introduction of different families of UQCMs. A family also includes generations

depending on a hierarchical structure of resource theories. We introduce a table of UQCMs by first

classifying two categories of models: one referring to the format of information, and one referring to the

logical evolution of information requiring quantum error-correction codes. Each category contains a few

families of models, leading to more than one hundred of them in total. Such a rich spectrum of models
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include some well-known ones that people use, such as the circuit model, the adiabatic model, but many of

them are relatively new and worthy of more study in the future. Among them are the models of quantum

von Neumann architectures established recently. This type of architecture or model circumvents the no-go

theorems on both the quantum program storage and quantum control unit, enabling the construction of

more complete quantum computer systems and high-level programming.

Correspondingly, each model is captured by a unique quantum resource. For instance, in the state

family, the universal resource for the circuit model is coherence, for the local quantum Turing machine

is bipartite entanglement, and for the cluster-state based, also known as measurement-based model is a

specific type of entanglement relevant to symmetry-protected topological order. As program-storage is

a central feature of the quantum von Neumann architecture, we find the quantum resources for it are

quantum memories, which are dynamical resources closely related to entanglement. In other words, our

classification of UQCMs also serves as a computational classification of quantum resources. This can be

used to resolve the dispute over the computing power of resources, such as interference, entanglement,

or contextuality. In all, we believe our theory lays down a solid framework to study computing models,

resources, and design algorithms.

Keywords: Universal quantum computing, Quantum resource, Quantum error correction

1 Introduction

1.1 Classical and Quantum

The field of quantum information and quan-

tum computing has made tremendous progress in

recent decades [1]. It is also referred to by other

names, such as quantum information science. The

core focus of this field is the study of the proper-

ties and applications of quantum information [2],

encompassing research directions such as quan-

tum communication, quantum computing, quan-

tum simulation, quantum sensing, and quantum

metrology [3]. It is not only a new branch of mod-

ern fundamental quantum physics but also an in-

terdisciplinary field that integrates physics, infor-

mation science, computer science, and more, with

significant potential for practical applications.

As an intersection of classical information sci-

ence and quantum physics, quantum information

science emerged in the 1980s. Following founda-

tional contributions by J. Bell [4], K. Kraus [5],

and A. Holevo [6], the mathematical frameworks

for quantum information and general quantum

evolution became increasingly well-defined. R.

Feynman and others recognized that using a con-

trollable quantum system (i.e., a quantum com-

puter) to solve quantum problems would likely

surpass the capabilities of classical electronic com-

puters, which were still evolving at the time [7].

D. Deutsch took a crucial step by proving the exis-

tence of a universal quantum computer [8], which

spurred further research by theoretical computer

scientists such as A. Yao [9] and U. Vazirani [10].

The field experienced rapid growth following the

development of Shor’s algorithm in 1994 [11].

In Fig. 1, key stages of development in both

2



classical and quantum computing are briefly out-

lined. When comparing the two, it becomes ev-

ident that the quantum field is still in the stage

of developing quantum chips. There remains a

significant distance to cover before achieving fully

functional quantum computers, network systems,

and practical applications across various indus-

tries.

The development of classical information sci-

ence provides valuable insights and a strong ref-

erence for the quantum field [12]. Pioneers such

as A. Turing and C. Shannon laid the theoreti-

cal foundations of computation and information,

while J. von Neumann proposed the architecture

for general-purpose computers [13,14]. With the

invention of semiconductor technology, particu-

larly transistors, companies like Intel and AMD

were able to mass-produce integrated circuits.

Drawing inspiration from theories such as cyber-

netics and systems theory, modern computing

systems—including computers, smartphones, and

other devices—adopt a hierarchical design, as il-

lustrated in Fig. 2. At the lowest level are basic

components such as circuits and transistors, which

enable the storage of bits. Above this are digital

and analog circuits that implement fundamental

operations, including Boolean logical gates, am-

plifiers, and rectifiers. Further up are circuits that

perform basic functions, such as adders and mem-

ory units. On this foundation, a microarchitec-

ture (i.e., the von Neumann architecture) is con-

structed, incorporating control, storage, commu-

nication, and computing units. Finally, at the

software level, there are assembly languages for

controlling microcomputers, operating systems for

managing devices, and various applications built

using high-level programming languages. This

hierarchical, modular, and regular structure [12]

highlights the importance of both hardware and

software design in computing systems.

In a physical system, the two states of classi-

cal bits (denoted as 0 and 1) can be effectively rep-

resented by properties such as magnetization di-

rection, voltage levels, or wavelength magnitudes.

In contrast, qubits allow for superposition states

of 0 and 1 [2]. This superposition, along with

multi-qubit quantum entanglement, offers signif-

icant advantages for quantum computing. How-

ever, the inherent instability of qubits, manifested

as decoherence, remains a fundamental challenge

[2]. Quantum error-correcting code theory has

been developed to address decoherence [15], but

practical implementation of error correction and

fault-tolerance remains a work in progress.

In terms of basic physical devices, signifi-

cant technological advancements have been made

in areas such as superconductivity, photonics,

ion traps, and cold atoms [16]. However, when

compared to classical devices, it is still unclear

whether a quantum counterpart to the transistor

exists—a single quantum device capable of simul-

taneously performing signal amplification, data

storage, and logical operations. Additionally, ex-

tensive research has been conducted on quan-

tum algorithms, leading to the discovery of sev-

eral algorithms with quantum advantages, such

as Shor’s algorithm, Grover’s algorithm, and the

Harrow-Hassidim-Lloyd algorithm [11,17–20]. De-

spite these breakthroughs, challenges such as de-

coherence and limited computational scale prevent

the rigorous implementation of these algorithms.

Consequently, compared to classical computers—
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图 1: Development of classical and quantum information science. Classical (up): From the 23 problems of Hilbert, Turing laid the

foundation of computation science. Shannon established the theory of communication, and von Neumann established the architecture of

computers. The next breakthrough include PN junction and transistor, forming the building blocks of modern integrated circuits. Quantum

(down): With the early study of EPR and Bell, the mathematical formalism of quantum channel, decoherence, and measurement were

developed by Holevo, Kraus, etc. The BB84 secure protocol boosted the field. The theoretical achievement is the recent development of

quantum resource theory as the theory of quantum information.

and particularly in the context of artificial intelli-

gence algorithms—the realization of quantum al-

gorithms and their advantages still faces signifi-

cant hurdles.

图 2: Hierarchy of computer system. There are layers of hard-

ware and software, and also the layers of system architecture.

1.2 Information and Computation

Theoretically, characterizing the superposi-

tion of quantum information is a complex task,

and our understanding of quantum information

continues to deepen. This field has evolved si-

multaneously in terms of foundational research

and practical applications, rather than following

a linear progression from theory to application.

Early explorations in quantum information can be

found in the seminal work of M. Nielsen and I.

Chuang [2]. However, this work does not cover

many important topics that emerged later, such

as many-body entangled states, universal com-

puting models, and quantum Shannon theory, as

these areas began to develop in subsequent years.

Recent literature provides a more comprehensive

view of these advancements [21–23].

Classical information is typically represented

as a string of bits (i.e., digital signals), and its

quantity can be measured using Shannon entropy.

Shannon’s three foundational theorems form the

basis of classical information theory and coding

[13]. In contrast, quantum information is repre-

sented by the quantum states of qubits, and its

quantity is generally measured using von Neu-

mann entropy. However, the von Neumann en-

tropy of all pure states is zero, necessitating other

quantities to distinguish between different pure

states. Unlike classical bits, qubits exist in Hilbert

space, and arbitrary quantum states cannot be

copied (no-cloning theorem) or perfectly distin-

guished. The framework of quantum resource

theory [24] has been developed to describe vari-

ous aspects of quantum information, including co-

herence, entanglement, nonlocality, contextuality,

complementarity, and uncertainty. Recently, this
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theoretical framework has also been applied as a

foundation for quantum computing [25].

In quantum computing, the quantum circuit

model is widely used, where a series of quantum

gates are combined to form the desired process

or algorithm [2]. This model parallels classical

Boolean logic circuits. Classical models such as

the Turing machine and cellular automata also

have quantum counterparts. These models are

considered universal computing models, meaning

any classical or quantum algorithm can be effec-

tively implemented within them. For both classi-

cal and quantum cases, these universal models are

equivalent, as processes implementing the same al-

gorithm can be mutually simulated. Researchers

continue to discover new universal quantum com-

puting models, such as adiabatic quantum com-

puting [26] and topological quantum computing

[27], which generally lack classical counterparts.

These models have inspired numerous quantum al-

gorithms and serve as the basis for quantum com-

puting architectures developed by various compa-

nies. However, because these models were pro-

posed at different times by experts from diverse

backgrounds, they have not been systematically

studied, and research focus varies widely. Unlike

the unified description provided by quantum re-

source theory, there has been no unified frame-

work to define and distinguish universal quantum

computing models.

Recent studies have demonstrated that quan-

tum resource theory and universal computing

models can be integrated, offering multifaceted

benefits. First, this integration provides a unified

framework for defining and categorizing different

universal quantum computing models, enabling

systematic study. Second, it situates quantum

resources within the context of universal quan-

tum computing, offering a systematic perspec-

tive on how to distinguish and utilize these re-

sources. Third, by describing computational mod-

els through resource theory, it becomes possible

to identify the resources underlying quantum al-

gorithms, resolving debates about the core re-

sources quantum algorithms rely on. Finally, this

approach has inspired the discovery and under-

standing of the quantum von Neumann architec-

ture, which theoretically addresses the problem of

quantum storage utilization and paves the way for

the development of quantum computing from ma-

chine language to assembly language, ultimately

enabling the construction of complete quantum

computer systems.

It is important to note that this paper adopts

a broad definition of quantum computing, encom-

passing the most general evolution of quantum in-

formation. In practice, narrower definitions may

be used, such as distinguishing between quan-

tum information (focusing on the fundamental

properties of quantum states and processes) and

quantum computing (focusing on quantum algo-

rithms). Strict quantum information theory (i.e.,

quantum Shannon theory) [21] is a distinct focus

for information theorists and differs significantly

from the perspectives of physicists. Our research

bridges resource theory and computational mod-

els, unifying the language of quantum information

and quantum computing research. This approach

could promote a holistic understanding of quan-

tum information and its evolutionary properties.

This article is structured as follows: In Sec-

tion 2, we review the fundamentals of quantum
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computing. In Sections 3∼ 5, we study the clas-

sification of universal quantum computing mod-

els and provide a brief analysis of each model.

In Section 6, we explore the quantum von Neu-

mann architecture and its applications. Finally,

in Section 7, we discuss related issues, includ-

ing the relationship between universal and dedi-

cated architectures, potential challenges, and fu-

ture directions. Since some quantum computing

models, such as adiabatic quantum computation

[26], topological quantum computing [27], quan-

tum walks [28], quantum cellular automata [29],

and cluster-state quantum computing (also known

as measurement-based quantum computing) [30],

have been extensively reviewed, this article focuses

not on the details of these models but on their clas-

sification from the perspective of resource theory.

2 Basics for Quantum Computation

2.1 Circuit model and algorithm

The most commonly used quantum comput-

ing framework is the circuit model [2,8]. In this

model, to implement a computational process or

algorithm, a simple initial quantum state is first

prepared, followed by an ordered execution of a

series of unitary quantum gates, and finally the

final state is measured. The measurement process

generally requires multiple executions of this cir-

cuit, and the calculation results are obtained after

statistical analysis. If the object being measured

is the Hermitian operator E, the final result is ex-

pressed as the expected value on its final state ρ

tr(Eρ) =
∑
i

piei, (1)

wherein ei comes from the eigenvalue decompo-

sition E =
∑

i ei|i〉〈i|, and the probability pi =

〈i|ρ|i〉 need to be obtained through statistical

analysis.

The process described above is similar to

a typical quantum physics experiment. How-

ever, quantum computing has more requirements,

which makes a computing system different from a

physical experimental system [12]. Here we focus

on three points, namely digitization, universality,

and programmability. Digitization requires quan-

tum states to be represented as multi-qubit states,

quantum evolution processes to be represented as

a combination of a series of fundamental quantum

gates, and quantum measurements to be simple

measurements of qubits. In fact, the digitization

of information and its evolution is both a require-

ment for universality and fault-tolerance, that is,

effective control of noise or errors.

An important fact is that there exists a so-

called universal quantum gate set, such as {H,

T, CNOT}, {H, CCNOT}, which allows any uni-

tary operator to be precisely represented as a

universal gate sequence [31]. This is the quan-

tum correspondence of classical Boolean logic.

Among them, H is the Hadamard gate that satis-

fies HXH=Z, HZH=X, X and Z are the Pauli op-

erators, and T satisfies T4 = Z. CNOT is a com-

monly used two-qubit control gate, while CCNOT

stands for three-qubit control gate, also known as

Toffoli gate. The existence of a universal gate set

is a prerequisite for ensuring the universality of

the circuit model. More generally, whether a com-

putational model is universal often boils down to

whether it can effectively simulate a set of univer-

sal gates. This also implies requirements for the

preparation of initial states, measurement of final

states, and coherence time. In the early days of
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quantum computing, these basic requirements for

implementing quantum computing were generally

referred to as DiVincenzo criteria [32].

Programmability is a relatively subtle but

more advanced requirement. From a software per-

spective, different algorithms are represented as

different circuits. In terms of hardware, achieving

universality may require a large number of differ-

ent circuits or chips. Therefore, people have devel-

oped programming methods that enable different

algorithms to be implemented on the same chip.

For the classical case, if the CPU’s operation is

G, for any input data bit string b⃗ and program A

represented as b⃗A, it needs to satisfy

G(⃗b× b⃗A) = Ab⃗× b⃗′A, (2)

where Ab⃗ is the desired result, b⃗A can be used

to restore the original program. However, for the

quantum case, the unitary G acting on quantum

data |d〉 and program state |pU 〉 with

G|d〉|pU 〉 = U |d〉|p′U 〉 (3)

must satisfy 〈pV |pU 〉 = 0, ∀U 6= V [33]. The

storage states of different quantum algorithms

or programs must be orthogonal, which is actu-

ally equivalent to classical storage. This so-called

quantum no-programming theorem, also known

as the quantum storage problem, was proven in

1997 by Nielsen and Chuang. Due to the conti-

nuity of unitary groups, the storage space grows

rapidly. The limitation of this theorem allows peo-

ple to only adopt a classical-quantum hybrid ar-

chitecture, which uses quantum chips to execute

quantum algorithms, and the storage of quan-

tum algorithms is based on classical data. Recent

studies have shown that this theorem is theoreti-

cally equivalent to the quantum no-cloning theo-

rem [34,35]. The process of reading and download-

ing unknown programs is a metrological process,

and if it can be implemented, the program can

then be cloned. If only approximate implemen-

tation is required, the degree of approximation is

limited by the uncertainty relation [34].

图 3: Structures of quantum circuit model and quantum algo-

rithms. The basic structure (top-left) has a classical algorithm A

that designs the quantum circuit U and measurement. It extends

to the iterative classical-quantum algorithms (top-right), which

can be “stretched” into a linear flow (bottom).

Within the framework of the circuit model,

The design of quantum algorithms also requires

a classical “mother” algorithm, see Fig. 3. For

example, in Solovay-Kitaev’s quantum compila-

tion algorithm [36], For arbitrary unitary oper-

ator U and compilation precision ϵ, The classical

algorithm A(U, ϵ) gives a classical representation

of the quantum circuit U ′, denoted as [U ′]. The

quantum circuit U ′ itself is implemented through

a quantum gate. The effectiveness of the algo-

rithm generally requires the complexity of the

classical algorithm A and the quantum algorithm

U ′, i.e. the time and storage space utilized, nei-

ther grows exponentially with 1
ϵ
and U , i.e. its

cost

cost ∈ O

(
poly

(
log 1

ϵ
, |U |

))
, (4)

and |U | represents some measure of the size of

U , such as a certain matrix norm. As the ac-

curacy increases, log 1
ϵ
may not necessarily reach,
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for example, the commonly used Trotter-Suzuki

decomposition can only achieve the 1
ϵ
form [37].

To calculate the probability of the observed quan-

tity in equation (1), A large amount of sampling

is still required. By using the quantum amplitude

amplification algorithm [38], probabilities can be

converted into amplitudes, and the sampling cost

is converted into computational cost. The require-

ment for accuracy actually implies fault-tolerance,

which cannot be achieved yet currently. There-

fore, most of the current experimental implemen-

tations of quantum algorithms are demonstration

experiments.

2.2 Fault-tolerance and error correc-

tion

The literal meaning of fault-tolerance is the

tolerance of errors, which requires the use of quan-

tum error-correcting codes [39] to effectively over-

come the effects of decoherence, noise, or errors.

Strictly speaking, achieving universality also re-

quires achieving fault-tolerance. In other words,

it refers to the realization of arbitrarily long-lived

qubits or the identity gate, which can connect

other quantum gates, such as the previously men-

tioned H, T, and CNOT gates. In the proof of a

model’s universality, it is generally assumed that

fault-tolerance can be guaranteed, meaning that

error correction is a separate issue.

Quantum noise or errors are generally de-

scribed as quantum channels [2]. The effect of

a channel Φ on a state is represented as the su-

perposition of a set of Kraus operators {Ei}

Φ(ρ) =
∑
i

EiρE
†
i , (5)

with
∑

iE
†
iEi = 1 [5]. More generally, using

quantum superchannel theory [40–42], quantum

error correction is a quantum superchannel pro-

cess Ŝ that enables

FE(1
⊗k, Ŝ(Φ⊗n)) ≥ 1− ϵ. (6)

图 4: Structure of quantum error correction that converts Φ⊗n

into 1⊗k approximately by a superchannel Ŝ.

As shown in Figure 4, where ϵ ∈ [0, 1] is the

accuracy or error of the error correction, and k,

n ≥ k are positive integers, r := k/n is the code

rate. The specific form of the superchannel will

be described later. The entanglement fidelity FE

is of the form FE(Φ,Ψ) := F (Φ⊗1(ω),Ψ⊗1(ω)),

and F is the usual fidelity of the state F (ρ, σ) :=

‖√ρ
√
σ‖21, ‖ ·‖1 is the trace norm, ω ∝

∑
i |ii〉 is a

Bell state, also known as an entangled bit (ebit).

The state

ωΦ := Φ⊗ 1(ω) (7)

is also known as the Choi state of channel Φ. Its

properties and Φ are equivalent, which is called

the channel-state duality principle [43]. Like the

uncertainty principle, it is a fundamental princi-

ple of quantum physics. These two principles will

also be reflected in the quantum von Neumann

architecture we will discuss later.

The error correction form above (6) includes

the earliest developed binary form, which first en-

codes with V and then decodes with D [39], as well

as its approximate cases [44]. To achieve fault-

tolerance, it is necessary to ensure that ϵ can ar-

bitrarily approach 0. The case where the error

ϵ = 0 corresponds to strict or exact error correc-

tion, where the noise operators and encoding must
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satisfy the Knill-Laflamme condition

PK†
iKjP = cijP, (8)

where P = V V †, V is the isometric encoding,

and {Ki} is the set of Kraus operators for the

noise [39]. A large class of exact error correc-

tion codes are the so-called stabilizer codes [2,45].

Typically, a stabilizer is composed of the direct

product of Pauli operators, the encoding is formed

by a set of commuting stabilizers, and decoding is

achieved by measuring the stabilizers to determine

if a bit flip X or phase flip Z error has occurred,

and then correcting it.

Ensuring that ϵ can arbitrarily approach 0 is

not straightforward. We recently proposed [46,47]

that by introducing external parameters λ⃗, ϵ(λ⃗)

can approach 0 in the parameter space. Codes sat-

isfying this condition are called quasi-exact codes,

while those that do not are merely general ap-

proximate codes. These parameters include k,

n, controllable parameters in the error correction

process Ŝ, and some parameters of the noise Φ

itself. Some well-known controllable parameters

include the squeezing parameter in optics, pho-

ton number, external field frequency in Floquet

control, chemical potential, temperature, and the

number of steps in code concatenation. The fault-

tolerance achievable using quasi-exact codes is

termed ”quasi fault-tolerance,” which lies between

non fault-tolerance and strict fault-tolerance. Ac-

cordingly, universality also needs to be reduced to

quasi-universality.

Combining the general form of error correc-

tion (6), quasi-exact codes can also describe some

generalized error correction mechanisms, such as

entanglement distillation, dynamical decoupling,

and schemes to increase the transmission distance

in QKD. Specifically, quasi fault-tolerance can be

divided into two types. 1) The first type is where

ϵ(λ⃗) cannot efficiently approach 0. For example,

the recently developed covariant codes with con-

tinuous symmetries [46–49] have an error correc-

tion error that scales as poly( 1
n
) with system size

n. This can be understood from the uncertainty

relation, as covariant codes can be interpreted as

a form of quantum metrology for unknown param-

eters [50]. Since no additional auxiliary qubits are

used to reduce system noise, the error correction

error from dynamical decoupling cannot decrease

exponentially with the strength of decoupling [51].

2) The second type is where ϵ(λ⃗) can efficiently

approach 0, but due to practical reasons, λ⃗ can-

not be arbitrarily adjusted. This describes some

noisy exact codes currently achievable in exper-

iments, such as the surface code [52], as well as

cases where error correction codes can be par-

tially applied. This type, in principle, falls within

the scope of fault-tolerance. Currently, the vari-

ety of quasi-exact codes known to us is limited,

although they impose weaker structural require-

ments on codes compared to exact codes.

The development of classical error correc-

tion codes provides us with valuable insights [53].

Currently, commonly used classical codes include

block codes, LDPC codes, convolutional codes,

Turbo codes, and Polar codes, which play sig-

nificant roles in computation and communication.

Research on quantum codes has primarily focused

on block codes and LDPC codes [54], while un-

derstanding of other types remains relatively lim-

ited [15]. More generally, how to theoretically

classify error correction and encoding methods,

and thereby systematically design error correction
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codes, is also an important research topic [55].

3 Universal Quantum Computing

Models

In this section, we first introduce the classifi-

cation methods for universal quantum computing

models, and then discuss the main properties of

these models separately. Due to historical rea-

sons, some computational models actually start

from fault-tolerance, such as topological quan-

tum computing, which implements quantum logi-

cal gates in a special way. We find that both uni-

versality and fault-tolerance can be characterized

from the perspective of quantum resource theory.

3.1 Quantum resource theory

For classification problems, the primary

choice is group theory. However, computational

processes generally do not involve specific sym-

metries. We find that the classification of univer-

sal quantum computing models requires the use of

quantum resource theory. Mathematically, quan-

tum resource theory can be described as a cate-

gory theory [56], which can also be understood as

a generalized symmetry theory.

A quantum resource theory is defined on a set

D, and includes three fundamental sets: F ⊂ D

as the free set, O : F → F as the set of free opera-

tions, and R := D\F as the resource set [24]. The

relationship between O and F can be viewed as a

generalized symmetry. To quantify the resource,

a function f defined on D must satisfy specific

conditions, which generally include:

i) Positivity: f(ρ) = 0, ∀ρ ∈ F ; f(ρ) ≥ 0,

∀ρ ∈ D;

ii) Continuity: f(ρ) → f(σ) if ρ → σ, ∀ρ, σ ∈

D;

iii) Additivity: f(ρ ⊗ σ) ≤ f(ρ) + f(σ), ∀ρ, σ ∈

D;

iv) Monotonicity: f(ρ) ≥ f(Φ(ρ)), ∀Φ ∈ O,

∀ρ ∈ D.

The metric function f can adopt distance, en-

tropy, Fisher information, etc. For example, a

well-known example is bipartite entangled states,

where the corresponding free set is separable

states, the free operations are local operations and

classical communication (LOCC), and the max-

imally entangled bipartite states are Bell states

[57]. Later, it was also recognized that coherence

is a resource [58]. By selecting a set of orthogonal

bases, the states diagonal in this basis form the

free set, which are all incoherent states, and inco-

herent operations can also be defined. In fact, von

Neumann entropy itself defines the most basic re-

source theory of states: by choosing the maximally

mixed state as the free set, and using negative en-

tropy (log d − S(ρ)) as a measure of the resource

of a state ρ, all pure states have the maximum re-

source measure, while the free operations are pro-

cesses that cannot decrease the entropy S(ρ).

Additionally, the set can not only be the state

space typically considered, but also other types

of operator sets, such as Hamiltonians, measure-

ments, channel evolutions, encodings, etc. Con-

sidering different types of operators can lead to

different types of computational models.

Within the framework of resource theory, we

define universality as using O(F ⊗ R) to imple-

ment any operation on D. To classify universal

computational models, we extend the form of re-
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source theory in two ways [25]. First, we define the

universal resource set U , whose resource measure

f(U) reaches the maximum value. Then, using

O(F ⊗U) can effectively simulate other processes

O(F ⊗ R). Second, we define resource sequences

satisfying F1 ⊂ F2 ⊂ · · · , O1 ⊂ O2 ⊂ · · · . To

achieve universality, the computational power of

the universal resources needs to increase progres-

sively, denoted as U1 � U2 � · · · . Furthermore,

for u1,2 ∈ U1,2, different universal resources must

satisfy the following relation

(O2\O1)(u2) = u1, O1(u1) = u2. (9)

This gives rise to a series of computational mod-

els, which we refer to as a “family.” In principle,

there is no upper limit to the number of mem-

bers in a family, but here we consider only three

members, which are already sufficient to generate

a wide variety of computational models.

3.2 Table of UQCM

Based on the above analysis, we first abstract

the computational process as O(F ⊗ U), along

with the error correction process, which includes

a series of logical and error correction steps, as

shown in Fig. 5. We consider sets of quantum

states, Hamiltonian, measurements, channel evo-

lution, as well as logical gates and encoding oper-

ators. From the perspectives of information rep-

resentation, evolution, and protection, we divide

universal computational models into two major

categories: Category I models, which depend on

different forms of information representation, and

Category II models, which depend on different

forms of information evolution [59]. The protec-

tion of information involves the type of encoding

itself, belonging to a third dimension, which is

not discussed here [55]. The classification table

of universal quantum computing models is shown

in Fig. 6, where the definition and properties of

each model are the main topics of this paper. Due

to space limitations, a detailed analysis of each

model cannot be provided, and readers are re-

ferred to additional literature for further details.

图 5: Structure of quantum computing model via quantum re-

source theory. The Category-I (-II) models are defined for differ-

ent types of input (logical operations).

Category I models arise from different forms

of information representation, where information

is represented as certain properties of quantum

states, Hamiltonian, measurements, and channels.

They each define a family, with three genera-

tions within each family, resulting in a total of

12 models. Category II models stem from the

classification of quantum logical gates, based on

their implementation methods: time-independent

unitary, time-dependent unitary, and non-unitary

evolution. They each define a family, with three

generations within each family, resulting in a to-

tal of 9 models. Further subdivision is possible

but not discussed here. Combining information

representation and logical evolution, there are a

total of 108 basic models. Among these, some

schemes have been thoroughly studied, while oth-

ers have not. See [59] for an analysis of some of

these schemes. Below, we explain the underlying
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图 6: The classification table of universal quantum computing models. There are 12 (9) Category-I (-II) models, hence in total 108

complete models (grey boxes). The most well-studied are those based on circuit model. The channel-family models are all von Neumann

architecture or models. Hybridization among models are also allowed.

logic of these models.

For example, in the state-family models, in-

formation is represented as the amplitudes ψi of

quantum states, i.e., pure states |ψ〉 =
∑

i ψi|i〉,

in a given basis {|i〉}. Computation involves op-

erations on these amplitudes, which is the well-

known process of interference. Mixed states can

be viewed as probabilistic mixtures of pure states.

When considering multi-qubit computational pro-

cesses, different restricted operation sets can be

selected based on locality within the resource

theory framework, defining a family. We find

that the state family includes the well-known cir-

cuit model, as well as the local Turing machine

model [60] and graph-state quantum computa-

tion, also known as measurement-based quantum

computation [30,61,62]. Their universal computa-

tional resources correspond to coherence [58], en-

tanglement [57], and specific forms of symmetry-

protected entanglement [63–65]. Here, the local

Turing machine is a simplification of the original

quantum Turing machine model [9,10,66], high-

lighting the locality of interactions and the entan-

glement properties of quantum states.

Category II models primarily depend on dif-

ferent forms of logical gates. If an encoding is rep-

resented by an isometry V , then different types of

logical gates V †GV after encoding lead to different

models. Note that this refers to the basic logical

gates in a universal gate set, such as H and T,

whose combinations can construct arbitrary log-

ical gates. Unlike the usual considerations, the

encoding here can be static (time-independent)

or dynamic (time-dependent). For example, the

time-dependent unitary class refers to V (t) under-

going continuous unitary changes, with adiabatic

quantum processes being an example [26]. The

non-unitary class refers to cases where the encod-

ing undergoes non-unitary changes, and here we

mainly consider the case where the encoding is a

set {Vi}, i.e., converting from one code to another,

which is known as code switching [67].

A fundamental property of logical gates is

their depth, which is relative to the size of the
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encoded system. As the name suggests, depth

refers to the time or number of steps required to

implement it, which is crucial for fault-tolerance

during the logical gate implementation process.

For example, a transversal unitary takes the form

⊗nUn, i.e., a global tensor product form, which

does not spread local noise and thus has better

fault-tolerance. Therefore, we distinguish three

basic forms: transversal, local finite-depth, and

high-depth, where local finite-depth refers to a fi-

nite number of local steps, and high-depth refers

to steps that scale with the system size. For

instance, the braiding operations of non-Abelian

anyons in topological quantum computation have

linear depth, belonging to the high-depth type

model in the time-independent unitary family [27].

The other two models in this family have also

been studied, where the transversal model can de-

scribe quantum metrology models [68], and the

local finite-depth model can describe most encod-

ing schemes, such as a multi-particle quantum

walk model [59]. Additionally, resource theory

can be used to characterize Category II models,

i.e., classifying the set of logical gates V †GV (e.g.,

based on depth), which requires further in-depth

research.

A complete model that considers both uni-

versality and fault-tolerance needs to combine the

above two categories. For example, the most com-

monly used approach combines the circuit model

with a fixed encoding scheme, such as some sta-

bilizer codes [2], but this is not necessarily the

best approach. We see that, in principle, there

are many equivalent universal quantum comput-

ing models, and when considering different physi-

cal experimental platforms, different physical im-

plementations of quantum gates, and various hy-

brid combinations of models, even more computa-

tional schemes can emerge. In practice, specific

choices are made. This illustrates the richness

and complexity of quantum computing research.

In summary, the classification table of models

systematizes the study of theoretical schemes for

achieving universal quantum computation, allow-

ing for principled definitions and understanding

of models, and the development of more compu-

tational schemes. Below, we focus on Category I

models, introducing the properties of each family,

as well as the specific forms and characteristics of

each model.

4 Category I

4.1 State family

4.1.1 Resource-theoretic characterization

For the state family, according to resource

theory, if the operations allowed on quantum

states are very limited, such as single-qubit opera-

tions plus classical communication, then achieving

universality requires some form of entangled state

as a universal resource. This can be used to de-

fine graph-state quantum computation [30,61,62].

When the operation set is expanded to include lo-

cal operations, this makes typical bipartite entan-

gled states as the resource [57], and such a com-

putational model is called the local Turing ma-

chine [60]. Further expanding the operation set to

enable universal classical computation (e.g., using

the Toffoli gate), the Hadamard gate becomes the

universal resource, which can generate superpo-

sition, corresponding to quantum coherence [58],

and is used to characterize the circuit model.
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Their universal resources satisfy the transfor-

mation relation (9). That is, the Bell state |ω〉 can

be generated from the maximal coherence state

|+〉 = 1√
d

∑
i |i〉 according to

|ω〉 = CNOT|+〉|0〉, (10)

where the CNOT gate is a given free operation in

the circuit model, but is a resource in the local

Turing machine. Similarly, using the local opera-

tions allowed in the Turing machine, the entangled

states required for graph-state quantum computa-

tion can be generated from the Bell state. These

special forms of states include two-dimensional

cluster states [61] and AKLT states [69], among

others. They take the form of matrix product

states (MPS) [69–71]

|ψ〉 = (⊗nPn)|ω〉⊗n. (11)

As shown in Fig. 7, MPS has three equivalent rep-

resentation schemes. Since it can effectively rep-

resent arbitrary quantum states, it has broad ap-

plications, as will be evident from our subsequent

discussion.

4.1.2 Model features
In Section 2.1, we have already introduced

the basic content of the quantum circuit model.

Here, we briefly discuss some of its features and

limitations. Theoretically, whether classical or

quantum, the circuit model is very fundamental

and serves as the basis for designing both soft-

ware and hardware. Other computational models

can be understood from the perspective of the cir-

cuit model, although different models can inspire

more novel ideas. Additionally, quantum circuits

are easy to control classically (i.e., the spatiotem-

poral positions of each logical gate are control-

lable) and easy to represent classically (i.e., the

type and spatiotemporal positions of logical gates

can be represented as bit strings), making it the

most popular model at present.

Compared to other models, the circuit model

also has some more subtle requirements, such as

the need for interactions between qubits, and the

requirement that qubit coherence times be long

enough to support deep circuits. This has practi-

cal implications. For example, in superconducting

circuits, crosstalk between interacting qubits is a

critical issue in current experiments [72].

Beyond universality, the circuit model does

not adequately consider other requirements, in-

cluding modularity, programmability, and secu-

rity. For instance, if a quantum algorithm is

represented as a circuit diagram, where the po-

sitions and types of gates are classical informa-

tion, it can be freely used, including by adver-

saries, if not encrypted. Considerations of se-

curity are the starting point for many secure or

privacy-preserving computational models, such as

multi-party secure computation [73], blind quan-

tum computation [74], and the quantum von Neu-

mann architecture we discuss later [35].

From the perspective of computer design ar-

chitecture (Fig. 2), the circuit model is primarily

used for hardware circuit design at the machine

language level, such as basic digital and analog

circuits. To adapt to higher-level languages, the

von Neumann model or architecture is required.

Therefore, from a hardware perspective, current

quantum computing research is still at the ma-

chine language level, and even stable qubits (i.e.,

fault-tolerance) have not been strictly achieved.

In classical computing, the Turing machine

model is one of the earliest models, and it is of
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great significance for understanding computabil-

ity, algorithms, and even computer architecture.

In contrast, research on quantum Turing machines

is relatively scarce. The main reason is that the

original quantum Turing machine model is com-

plex (e.g., using global interactions) and has some

issues [66,75], which we will not elaborate on here.

From the perspective of resource theory, i.e., tran-

sitioning from the coherence dependence of the

circuit model to entanglement, we find that the

model relying on entanglement as a resource is the

local quantum Turing machine [60]. Mathemati-

cally, an appropriate form for characterizing en-

tanglement is the matrix product state (11), which

can also be expressed as

|ψ〉 =
∑

i1,...,iN

tr(BAiN · · ·Ai1)|i1 . . . iN 〉. (12)

Here, the amplitude is represented as the trace of a

product of a series of operators A and a boundary

operator B. The space on which these operators

act is the so-called “bond space,” which can be

referred to as the entanglement space [69–71].

It is important to note that any state can be

written in the above form, and the dimension of

the entanglement space can be a constant or scale

with the system size N . The entanglement of a

state corresponds to the properties of its entan-

glement space. This entanglement space can serve

as the machine state space in the Turing machine

model, where a computational process is com-

pleted through one-to-one interactions between

this system and the data unit, with no direct in-

teractions between data units (unlike the circuit

model). However, exploration of this model in

practice is still relatively limited.

图 7: Representations of matrix-product states. (Top) Tensor

form: the top register is the entanglement space, the vertical wires

are physical sites, the boxes are the tensors or matrices. (Middle)

VBS or AKLT form [69]: tensors are defined by local operators

(circles) acting on Bell states (Eq.11). (Bottom) Circuit form:

each tensor is realized by a unitary circuit (big boxes).

Historically, MPS and their derived tensor

and neural networks have primarily been applied

in many-body and statistical physics [76], with rel-

atively few applications in quantum computing.

From the perspective of entanglement, compared

to pure computational tasks, its role in tasks such

as storage and communication may be more pro-

nounced, such as in distributed computing [77].

The graph-state quantum computation is also

known as the “one-way” model or measurement-

based quantum computation [30,61,62]. This

model was discovered relatively early and, due to

its novelty, garnered significant attention at the

time. Unlike the circuit model, it does not re-

quire the design of various circuits or interactions

between qubits, but instead involves a series of

local measurements with feedback on a given re-

source state. These measurements induce quan-

tum gate teleportation processes that can imple-

ment quantum gates [78]. Since measurements

are destructive, a computational process consumes

the resources contained in the resource state. This

also explains the origin of the term “one-way” in
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its name. However, from the perspective of re-

source theory, it is more appropriate to refer to it

as a computation model based on graph states or

some equivalent resource states. To avoid confu-

sion with the measurement family, in this paper,

we generally refer to it as graph-state quantum

computation. Additionally, it carries a hint of the

stored-program concept, where multi-qubit entan-

gling gates are potentially pre-stored in the ini-

tial resource state. These characteristics have in-

spired the development of the quantum von Neu-

mann architecture, as both quantum gate telepor-

tation and stored programs are core components

of it [79].

At the same time, the research approach of

studying universal models from the perspective of

resources was also inspired by this model. This is

because researchers have long been studying the

universality and universal resource states in this

model [80,81], such as determining which graph

states are universal. Moreover, it has been found

that if an arbitrary state is given, its entangle-

ment is typically large, but it is not a universal

resource in this model [82,83]. This once led to

debates about whether the resource for quantum

computation is entanglement or interference.

Recently, we first demonstrated [63–65] that

the universal resource states need to be of a spe-

cial type. Expressed in MPS form, they require a

boundary form

|ψ(ℓ)〉 =
∑

i1,...,iN

AiN · · ·Ai1 |ℓ〉|i1 . . . iN 〉, (13)

and must satisfy the injectivity condition on the

entanglement space, meaning that measurement

operations on the physical space induce arbitrary

unitary processes on the entanglement space, i.e.,

the state |ℓ〉 can evolve into any desired state. An

example is the case with symmetries, which are

symmetry-protected states in many-body physics

[84–86]. The previously mentioned cluster states

possess one-dimensional Z2 × Z2 [63] or two-

dimensional Z2 1-form symmetries [65], while the

AKLT states have global SO(3) symmetry, among

others [69]. See [25] for more characterizations

based on resource theory.

In practice, this model has been more widely

used in optical systems [87], because measuring

multiple photons is easier to implement compared

to interactions. The preparation of large-scale re-

source states is not necessarily easy, so they can

also be generated in real-time. However, the ideal

scenario is that the resource state is given, such

as in a many-body quantum state, but the re-

quirements for local measurements are currently

difficult to achieve.

4.2 Hamiltonian family

4.2.1 Resource-theoretic characterization

The Hamiltonian family relies on the form of

local Hamiltonian interactions and assumes that

each interaction term can be turned on or off. For

the algorithm, its input state can be regarded as

an eigenvalue of a certain Hamiltonian, as shown

in the equation

H|ψ〉 = E|ψ〉, (14)

where the algorithm itself modifies the Hamilto-

nian, which in turn is equivalent to altering the

state. Therefore, by considering the set of local

Hamiltonian interactions and the operations on

them, analogous to operations on quantum state

amplitudes, the Hamiltonian family can be in-

troduced. We find that it includes Hamiltonian
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quantum simulation, Hamiltonian quantum cellu-

lar automata, and adiabatic quantum computa-

tion models.

Hamiltonian quantum simulation refers to

constructing other Hamiltonians using a finite set

of interaction forms. Within its family, it allows

the most general construction methods. If the way

interaction terms are combined is restricted, such

as allowing only parallel schemes, this leads to the

Hamiltonian quantum cellular automata model.

According to the transformation relations of uni-

versal resources, the interactions it relies on can be

prepared using Hamiltonian simulation. If further

restrictions are imposed, allowing only adiabatic

schemes, this results in adiabatic quantum compu-

tation, whose universal interaction forms are more

complex, such as the commonly used Feynman-

Kitaev Hamiltonian form [88].

4.2.2 Model features

Hamiltonian quantum simulation has been

considered for a long time [7,37,89,90], but it is

generally framed within the context of the cir-

cuit model. The work on independently consid-

ering the universality of Hamiltonians themselves

was completed in recent years [91–93], specifically

studying what kinds of interactions can realize ar-

bitrary interaction forms. The basic idea is to use

the Trotter decomposition to express the desired

Hamiltonian

H =
∑
n

jnhn (15)

and its evolution U = eiHt as a product of a se-

ries of eitnjnhn [37]. Here, hn can be just a limited

number of interaction forms. It has been proven

that almost any two-body interaction is univer-

sal [91–93]. In practice, compared to the circuit

model, the control over interactions is not neces-

sarily superior to quantum gates. This model may

have a closer relationship to many-body quantum

physics, such as in Hamiltonian complexity [93].

The more well-known Hamiltonian evolution

simulation and analog simulation can be seen as

simplified applications of this model. In quan-

tum algorithms, Hamiltonian evolution simulation

[94] mainly aims to decompose a certain evolution

U = eiHt (or its time-dependent form) into a series

of smaller evolution, but without using a univer-

sal set of interactions. Another scenario is the

so-called analog simulation (or emulation) [95],

which requires even less control over local inter-

actions. This situation is mainly suitable for cer-

tain specific physical systems, used for the study

of particular specialized problems.

If the operations on Hamiltonian terms are

restricted, new computational models can be in-

troduced. A natural choice is to switch these in-

teractions in parallel. To achieve universality, the

required basic Hamiltonian forms become slightly

more complex. This leads to the Hamiltonian

cellular automata model [25]. It requires a one-

dimensional system where each site contains two

qubits (one data qubit and one auxiliary qubit)

and a three-level system (qutrit). The basic inter-

action is given by

H = |0〉〈1| ⊗ U + |1〉〈0| ⊗ U †, (16)

where the first part acts on the auxiliary qubit,

and the unitary operator

U = P0 ⊗ 1+ P1 ⊗W + P2 ⊗ Ξ, (17)

has its first part acting on the qutrit. Finally,

W = P0 ⊗ 1+ P1 ⊗HZ, (18)
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acts on the two data qubits. Here, Ξ is the SWAP

gate on the data qubits, which, together with W ,

forms a universal gate set {Ξ,W} [96]. Thus,

given any circuit composed of W and Ξ, it can

be simulated by a cellular automata constructed

from H (16). It is worth noting that the above

complex forms are only necessary to prove univer-

sality and are not necessarily adopted in the study

of specific problems.

This model is classically controllable, mean-

ing its parallel interactions can be switched on

or off. Although named an automaton, it is not

a fully autonomous evolution form (i.e., eiHt).

Previous work has shown that models based on

autonomous evolution cannot deterministically

reach the desired final state, even if the require-

ment for parallelism is removed [28,97–100]. Ad-

ditionally, there are gate-based cellular automata

forms. Overall, research on such models is rela-

tively limited [29]. An interesting observation is

that one-dimensional quantum models can be uni-

versal, whereas classical models must be higher-

dimensional [101]. Similar to the classical case,

cellular automata models are less widely used than

circuit models, but they are often employed in the

simulation of dynamics [102].

In comparison, adiabatic quantum compu-

tation has received more extensive research [26],

benefiting from studies on quantum adiabatic

processes and quantum annealing. The univer-

sality of this model is typically proven using

the Feynman-Kitaev history state method [88].

Specifically, given a circuit U = UL · · ·U2U1, it

is transformed into a Hamiltonian HFK, whose

ground state is the history state

|Φ〉 = 1√
L+ 1

L∑
ℓ=0

|γℓ〉 (19)

where |γℓ〉 = |ψℓ〉|ℓ〉, |ψℓ〉 = U ′
ℓ|ψ0〉, U ′

ℓ =

Uℓ · · ·U2U1, |ψ0〉 is the initial state, and |ℓ〉 is the

clock state. Adiabatic evolution is then employed

to map the ground state |γ0〉 7→ |Φ〉. The history

state contains the true final state |γL〉, whose re-

alization probability can be effectively increased,

but at the cost of more clock qubits and interac-

tion terms. We observe that, since the Hamilto-

nian terms can only be turned on or off adiabati-

cally, the required Hamiltonian forms, or universal

resources, become more complex. In the subspace

{|γℓ〉}, it can be represented as a one-dimensional

quantum walk form [25].

In practice, adiabatic quantum computation

has been used to explore quantum advantages.

However, due to the inability to guarantee com-

putational precision, it is challenging to obtain

deterministic results [103,104]. Since this model

belongs to the Hamiltonian type, it is related

to Hamiltonian computational complexity. For

example, a class of Hamiltonians is quantum

stochastic (stoquastic), and when the local pa-

rameter k ≥ 2, it becomes a complete problem

for the complexity class StoqMA [105]. Addi-

tionally, adiabatic processes have broader appli-

cations, such as in adiabatic geometric phases

and quantum gates [106], primarily implemented

within the framework of the circuit model for

quantum gates. Due to their geometric nature,

they exhibit a certain robustness to noise. This

can be leveraged to enhance the fault-tolerance of

adiabatic quantum computation.
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4.3 Measurement family

4.3.1 Resource-theoretic characterization

Next, we discuss the measurement family.

Note that here, measurements are treated as

resources, whereas in the previously discussed

graph-state quantum computation, measurements

are considered free operations. In fact, the mea-

surement family can also be referred to as the

(quasi)probability family, as it is based on the

(quasi)probability representation or phase-space

representation of quantum information. Specifi-

cally, a state is expanded as

ρ = r⃗ · σ⃗, (20)

where σ⃗ forms a Hermitian operator basis, and

ρ is reduced to a vector r⃗ = (ri), satisfying

sum(r⃗) =
∑

i ri = 1 [107]. If ri ≥ 0 for all i,

such states can be viewed as classical probabil-

ity distributions. Correspondingly, the quantum

nature of a state is characterized by the negativ-

ity of r⃗, i.e., the Wigner quasi-probability func-

tion. This formalism is widely used in quantum

optics and phase-space representation theory. For

computational models, an important conclusion

is that pure states with positive r⃗ are stabilizer

states [108], while mixed states are not. The free

operations on stabilizer states are the so-called

Clifford operations [2]. It has been discovered that

universal quantum computation can be achieved

by providing a sufficient number of “magic states”

for the T gate, such as |t〉 := T|+〉, leading to

the magic-state computation model [109]. This

can then be extended into a family of models, in-

cluding contextuality-based computation models

that directly rely on Wigner negativity and mod-

els that depend on Popescu-Rohrlich nonlocal cor-

relations [110].

4.3.2 Model features
The mathematical description of measure-

ment is POVM [2]. It is typically a collection

{Mi}, where the positive operators Mi ≥ 0 sat-

isfy
∑

iMi = 1. Given a state ρ, measuring it

yields three pieces of information: the outcome

i, its probability pi = tr(Miρ), and each final

state ρi. Measurements can be implemented us-

ing channels, where the Kraus operators satisfy

K†
iKi = Mi and retain the information about

i. In practice, there are many types of measure-

ments with different names, such as destructive

measurements when ρi is destroyed, indirect mea-

surements when auxiliary qubits are required, and

weak measurements when one of the Mi is close

to the identity operator 1.

The first model in the measurement family

is the contextuality-based computation model we

defined [25]. Contextuality is equivalent to the

negativity of the Wigner function [111]. The core

idea of this model is a class of contextual quantum

circuits, which can be expressed as

trc(CV (U2 ⊗ 1)CU(U1 ⊗ 1)) (21)

where U1 and U2 act on the auxiliary register, also

called the control or context unit, while the other

port is the data register. CV and CU are two

control gates (also called multiplexer gates), tak-

ing the block-diagonal form

CU =
∑
i

Pi ⊗ Ui, (22)

where Pi = |i〉〈i| is the projection operator on the

control unit, and Ui acts on the data unit. The

entire circuit can be viewed as using the ancilla to

perform measurements on the data to enable evo-

lution. We found that basic quantum gates such
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as H, T, and CNOT can all be expressed in this

form, with the initial state of the ancilla being

|+〉 and the measurement being the Pauli X mea-

surement MX . The gates used are all incoherent,

meaning they cannot create superposition. This

proves the universality of the model.

The universal resource in this model is the

MX measurement. If the initial state is replaced

with |0〉, |1〉, or their probabilistic mixtures, and

MX is replaced with MZ , then it can only pre-

pare classical probability functions, i.e., Wigner

functions with positive values. The role of the

MX measurement is similar to the H gate: MX

is equivalent to applying MZ after an H gate.

Given the |0〉 state, MX can produce |+〉. In

essence, its role is to create superposition of gates.

More generally, we define quantum contextuality

as the superposition of different contexts. A quan-

tum context refers to a quantum operation, such

as state preparation, evolution, or measurement

(see [112]). When two operators commute, they

are compatible and can coexist, reducing to clas-

sical numbers or functions. Quantum contextu-

ality refers to the coexistence (i.e., superposition)

of incompatible quantum contexts. Classical con-

textuality can then be defined as the mixture of

quantum contexts. Similar to the quantum cir-

cuit model, its restricted set consists of classical

circuits, so their universal resources (i.e., coher-

ence and contextuality) are equivalent resources.

Since this is a new model, current under-

standing of it is still limited. Here, we briefly

discuss a few points. First, contextual circuits

can be seen as an extension of quantum teleporta-

tion and gates [113,114], with the latter being the

origin of using measurements for computation or

communication. It also highlights the importance

of measurement outcomes, i.e., classical commu-

nication, which is a property that runs through

the entire measurement family of models. The

use of the control system to create superposition

of gates originates from the so-called LCU algo-

rithm [19,115–118], but it typically requires post-

selection on the controller, making it probabilistic.

The control unit is also a core component of the

von Neumann architecture, so there may be some

connections between these two types of models.

The magic-state quantum computation

model uses a special class of Wigner-positive

states as the restricted set, namely stabilizer

states. This model has been studied earlier and is

relatively mature, and its combination with sta-

bilizer error-correcting codes is also natural [109].

Based on their action on Pauli operators, the k-th

level of the Clifford hierarchy is defined as

C(k) := U |UPU † ∈ C(k−1), ∀P ∈ Pn, (23)

where Pn is the Pauli group on n qubits [114].

Here C(2) is the Clifford group, which consists

of free operations on the set of stabilizer states.

Therefore, to achieve universality, at least one

higher-level gate is needed, such as the T gate

or the CCNOT gate, which is equivalent to some

non-Clifford measurement. Using stabilizer codes

and teleportation, fault-tolerance and universality

can be simultaneously achieved [119]. However,

in practice, achieving fault-tolerance is not easy.

One reason is that preparing stabilizer states and

implementing error correction are significant ex-

perimental challenges, and another is that prepar-

ing the magic states required for teleportation

(e.g., |t〉 = T|+〉) also requires purification or er-

ror correction processes.
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In both of the above models, classical com-

munication is a necessary part of deterministically

implementing quantum gates. This actually high-

lights the role of correlations. A stronger form of

correlation, known as Popescu-Rohrlich (PR) non-

locality [110], can replace classical communication

to achieve the transmission of T gates [120]. For

binary inputs x, y, the outputs a, b of a PR process

satisfy

a⊕ b = x · y, (24)

which maximally violates the CHSH inequality

[121], exceeding the value allowed by quantum

theory. Based on this, we introduced the nonlo-

cal magic-state (or “post-magical”) computation

model [25], which is briefly outlined here. It can

be seen as a modification of graph-state quan-

tum computation, where the measurement feed-

back process is replaced by PR correlations, en-

abling instantaneous nonlocal computation with

one-way secrecy. Its restricted set of free opera-

tions is minimal, including only single-qubit Pauli

measurements and the broadcasting (rather than

two-way communication) of measurement results.

Correspondingly, it requires PR correlations and

some form of graph states to achieve universality.

This model makes PR correlations particu-

larly special. Previous research has shown that

if classical communication is not used in telepor-

tation, an exponential amount of entanglement is

required [122], which can be replaced by a small

amount of PR correlations. Moreover, PR corre-

lations do not need to be perfect; even a small

amount of beyond-quantum correlation can re-

place classical communication [123]. Currently,

the role of classical communication in quantum

computation is not fully understood [124]. For

example, in studies of error correction and chan-

nel capacity, the quantum channel capacity as-

sisted by backward one-way classical communica-

tion differs from that assisted by two-way classical

communication [125]. This is also related to inter-

active proof systems [126], and an open question

worth exploring is whether there exists a finite

interactive proof system that can replace PR cor-

relations, leading to a new model in the measure-

ment family.

4.4 Channel family

The core feature of the channel family model

is the utilization of quantum channels to carry in-

formation, making them stored-program models,

i.e., the quantum von Neumann architecture. Ac-

cording to the channel-state duality principle [43],

a quantum channel is equivalent to its Choi state

(7). In our model, quantum programs are repre-

sented as Choi states. The computation process

consists of unitary operations and measurements

on the Choi states. Since this type of model will

be analyzed in detail later, we focus here on the

characterization of its resource theory [127].

In the three types of models discussed ear-

lier, we observe that their universal resources arise

from different locality properties: if the set of free

operations is larger, the universal resources are

easier to prepare. For the set of channels, the three

models we define depend on storage (i.e., the iden-

tity logical gate 1), bipartite storage (correspond-

ing to entangled logical gates such as CNOT), and

a non-local operation based on covariant quan-

tum measurements [127]. The corresponding free

sets are entanglement-breaking channels, bipartite

local channels, and single-site channels, respec-
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tively. These three models are collectively referred

to as the quantum von Neumann architecture, de-

noted as Model I, II, and III.

For Choi states, since they are derived from

Bell states, their fundamental property is entan-

glement. A class of channels is the entanglement-

breaking channels [128]

EEB(ρ) =
∑
i

tr(Miρ)σi, (25)

where {Mi} is a POVM, and σi are states. The

Choi states of such channels are separable and

thus cannot be used for quantum information

transmission. We know that classical computa-

tion can be described as a stochastic process, and

any stochastic process p⃗ 7→ q⃗ = Sp⃗ can be imple-

mented using some POVM {Mi} as

Sij = 〈j|Mi|j〉, (26)

which is also a special type of entanglement-

breaking channel. Therefore, we define the free

set of Model I as entanglement-breaking channels,

and all channels that do not break entanglement

are resources. Clearly, the resource with the high-

est degree is unitary evolution, whose entangle-

ment is equivalent to that of Bell states.

In fact, from the perspective of storage, Bell

states are the fundamental units of storage [129,

130], enabling read and write functionalities, i.e.,

writing via measurement on one end and reading

on the other. According to channel-state duality,

Bell states serve as dynamical resources. This dif-

fers from the state family, where entangled states

are static resources. The dynamical counterpart

of entanglement is actually the bipartite entan-

gled channel, which leads us to define Model II.

Considering the locality of Choi states, for exam-

ple, under the A|B partition, a bipartite channel

ΦAB is separable if and only if ωΦAB is separable

(note that the locality here differs from Model I).

Thus, by analogy with entanglement, taking sep-

arable bipartite Choi states as the free set and

local operations with classical communication as

free operations, entangled bipartite channels be-

come resources, with the maximal resource rep-

resented by the CNOT gate. This model can be

used to design the structure of quantum chips, as

will be discussed in detail in Section 6.

How, then, can we construct a Model III that

relies on non-local storage? A natural consider-

ation is to use non-local storage states, allowing

the stored program to be directly recovered, i.e.,

Equation (3) can approximately hold. The previ-

ous two models cannot read out the program it-

self but only obtain certain observational results.

This problem is equivalent to a metrological prob-

lem, where the process of reading the program is

the process of measurement [34], and its precision

is obviously limited by the uncertainty principle.

If the size of the program state system is propor-

tional to n, the computational precision is propor-

tional to 1
n2 . In a weaker sense, i.e., when the com-

putational precision requirement is low, this can

be considered as achieving quasi-universality [46].

Whether this model can be modified to achieve

universality is a question worth further explo-

ration. It is also straightforward to show that this

scheme can be represented as operations on Choi

states [127]. The quantum von Neumann archi-

tecture discussed later primarily relies on Models

I and II.
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5 Category II

We continue to discuss the type II models.

As pointed out earlier, it is classified according to

the depth of the basic logical gates. This type of

model relies on the properties of error-correcting

codes, especially the logical gates they support.

Note that here we are mainly considering gates in

the circuit model, because the operations in other

type I models can also be reduced to the basic log-

ical gates and measurements in the circuit model.

Since our understanding is not yet mature, we will

not analyze each model one by one. We will con-

duct a more detailed discussion of the case of fixed

encoding.

In the (time-independent) unitary family, a

coding method needs to be fixed, such as a cer-

tain isometry V . It basically also determines the

optimal decoding method, although different de-

codings can be used in practice. In this family,

the encoding of the single-step model is relatively

simple. For a single fixed exact code, Eastin and

Knill proved that the single-step (i.e. transver-

sal) logical gates cannot achieve universality, be-

cause the number of transversal logical gates is fi-

nite [131]. In recent years, it has been found that

this is related to symmetry. If continuous sym-

metries are allowed, such as U(1) or U(d), such

so-called covariant codes can only be approximate

codes [46–49], and their error-correcting accuracy

is limited by the uncertainty relation. Since the

transversal unitary operation does not change the

entanglement of the system, the number of states

that can be prepared by this model is finite, so it

cannot achieve universality; on the contrary, since

the covariant code is an approximate code, it can

only achieve quasi-universality [46].

More generally, the SU(d) group is not neces-

sarily a strict symmetry, and the quantum metrol-

ogy task belongs to this case [68]. Covariant codes

can also be used in metrology tasks, and their

accuracy is limited by the uncertainty relation.

Metrology does not assume symmetry, it generally

refers to a process O(λ) containing an unknown

parameter λ acting on a certain resource state |ψ〉

in the form of single-step, and then estimating the

value of λ by observing a certain quantity.

In addition, often in the field, quantum

metrology and computing are listed as different

research directions side by side [132], which is in

a narrow sense. The former pays more attention

to the processing of analog signals (such as λ) and

has limited accuracy, while the latter pays more

attention to digital information and has harsher

requirements on accuracy. But in a broad sense,

they both belong to the research scope of univer-

sal quantum computing or quantum information

science.

The multi-step model can describe more sit-

uations of error-correcting codes. For example,

for a general stabilizer code, the logical Pauli X

and Z are generally single-step, and sometimes the

H, S, CNOT, and even the T gates can also be

single-step, but they cannot all be single-step at

the same time [131]. There will be the problem

of error correction in the implementation process

of multi-step gates, because it will get away from

the code space. This is an important problem,

and one solution is to combine the idea of code

conversion, forming other error-correcting codes

during the implementation process, so that error

correction can still be carried out [133].

Another noteworthy approach involves bor-
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rowing ideas from Hamiltonian simulation and

space-time mapping. This entails viewing the

direction of circuit evolution as space, treating

logical gates as the evolution of Hamiltonians,

and considering logical qubits as excited states of

Hamiltonians. In this framework, each logical gate

takes a multi-step form. This essentially repre-

sents a Hamiltonian-based multi-particle quantum

walk model [28]. For instance, the Hubbard model

has been proven to be a universal model. Alter-

natively, the spatial direction can be dispersed,

meaning qubits are not arranged in a regular lat-

tice structure. Instead, similar to circuit models,

the time direction remains the actual evolution di-

rection, with each logical qubit and gate stored in

a small subsystem, akin to optical systems. This

requires precise control over the system’s excited

states and their interactions [59].

From the perspective of entanglement, multi-

step finite-depth operations can alter the system’s

short-range entanglement, while high-step opera-

tions can modify long-range topological entangle-

ment [134]. Among high-step models, topological

quantum computation is the most mature [27] and

holds promise as the hardware foundation for fu-

ture universal quantum computers. For Abelian

anyons, such as surface codes [52], braiding oper-

ations are not high-step and cannot achieve uni-

versality. True universality is achieved through

non-Abelian anyons (e.g., Fibonacci) via braid-

ing operations, which must be implemented quasi-

adiabatically, with the number of steps propor-

tional to the system size [135]. However, topolog-

ical systems cannot achieve self-correction [136],

meaning topological information is disrupted at

finite temperatures, and thermal excitations can

lead to logical errors. During braiding, it is crucial

to prevent anyons from interacting with thermally

generated anyons. Although topological systems,

such as fractional quantum Hall systems, have

been experimentally realized, braiding anyons re-

mains a significant challenge [137].

For dynamic codes, they are less well un-

derstood. Compared to static codes, dynamic

codes offer the advantage of an additional con-

trollable dimension, making error correction and

universality easier to achieve. However, they im-

pose higher demands on external controls (unitary

or non-unitary). Several mature time-dependent

control methods have been developed, including

dynamical decoupling [51], Floquet control [138],

adiabatic evolution [26], geometric phases [106],

and measurement-based methods [67]. Among

these, dynamical decoupling does not consume

additional auxiliary qubits, offering approximate

error correction capabilities [139]. Floquet con-

trol can be seen as an extension of this. For ex-

ample, in many-body codes, Floquet many-body

states can serve as error-correcting codes. Adi-

abatic evolution is primarily viewed as a type I

model but can also be used to evolve code spaces.

Currently, geometric phases are mainly used to

construct quantum gates at the physical level, but

this could be extended to the logical level, which

remains an area for further research.

For non-unitary transformations in dynamic

codes, they can be categorized into continuous

and discontinuous types. The former is related

to dissipative computing models [140], while the

latter is associated with measurement-based quan-

tum computation [61] and measurement-based

code switching methods [67]. Currently, dissi-
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pative computing models are primarily used for

quantum state preparation, with limited study

on how to achieve transformations at the logical

level. Measurement-based quantum computation

is mainly viewed as a type I model but can also

be seen as a single-step measurement-based code

switching method, such as transitioning from one

graph-state code to another. Measurement-based

code switching can be seen as a generalization

of it, leading to universal quantum computation

schemes. For example, combining Reed-Muller

codes with Steane codes can achieve a universal

set of single-step logical gates [141], which is im-

possible with a single code. The transformations

on dynamic codes can be viewed as costs for re-

alizing logical gates, contributing to their depths.

It is not hard to see it can also be classified into

three types of models.

In all, compared to static codes, dynamic

codes offer greater flexibility and impose differ-

ent technical requirements. By combining multi-

ple codes, they can outperform single codes, mak-

ing them a promising direction for future develop-

ment.

6 Quantum von Neumann architec-

ture

6.1 Basic Structure

In this section, we focus on the quantum von

Neumann architecture or model [35,79,127,142].

It includes quantum input, output, communica-

tion, control, storage, and computing units. In

theory, it needs to overcome the impossibility the-

orems in the construction of quantum program

storage units [33] and quantum control units [143].

Recent theoretical studies have shown that these

difficulties can be overcome, thereby making a uni-

versal quantum von Neumann architecture possi-

ble. Its universality is also demonstrated by the

simulation of quantum circuits, meaning that any

given quantum circuit can be implemented by the

basic operations in the von Neumann architecture,

including measurement-driven read and write, i.e.,

input and output, and the combination of gates

based on quantum gate teleportation. Compared

to the circuit model and other models, the von

Neumann architecture takes more into account

the requirements of modularity, programmability,

and security. Here, we focus on analyzing the pro-

cesses related to storage and control. Addition-

ally, our analysis is limited to theoretical aspects,

not involving how to implement it on specific sys-

tems or more details, such as the type of storage.

图 8: Schematics of the quantum von Neumann architecture

(left) and the circuit model (right). For the later, there is no ex-

plicit quantum control unit and storage of quantum programs.

6.1.1 Read and write
As shown earlier, we use the Choi state to

store the program. This can bypass Nielsen-

Chuang’s no-go theorem [33]. That is, unlike ex-

tracting the action of a program U on the state,

We only ask for its observation on a certain quan-

tity. According to the channel-state duality prin-

ciple, the action of the channel or program E on

the state ρ is implemented in the following way

E(ρ) = d trB[ωE(1⊗ ρt)], (27)
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where ρt is a transpose of ρ, trB acts on the second

part of ωE , d is a dimension parameter. We often

consider unitary case, that is |ωU 〉 = (U ⊗ 1)|ω〉，

or simply |U〉. In the above, ρt can be realized by

the measurement process {
√
ρt,

√
1− ρt}, which

forms an initial-state injection, i.e. the writing

process. The final result is a measurement of ob-

servable, i.e., tr(Aρf ), which is weaker than the

requirement of getting the entire state ρf .

For example, for the case of a pure state, sup-

pose the initial state is |0〉, we need to calculate

pi = |〈ψi|U |0〉|2. (28)

The initial state is written by {P0, P0̄}, P0̄ =

1 − P0. The read operation is implemented by

{|ψi〉〈ψi|}. Here, the randomness of the measure-

ment has been taken into account: P0 will get pi,

P0̄ will get p′i = 1−pi, and they are equivalent [79].

When the initial dimension is large, it is also pos-

sible to effectively realize the initial-state injection

with a binary measurement process. We see that

the program states are all bipartite, with one end

as the write side and the other as the read side.

In the model, the program state may be pre-

pared by a dealer or someone else and sent over

the network. Since it is a quantum state, it is

secure from the outside world. We’ll discuss this

more later.

6.1.2 Universal quantum teleportation
The communication of quantum information

(uploading, downloading, etc.) is an important

part of this model. It can also be implemented in

a variety of ways. Here we discuss the processes

involving quantum state and gate teleportation.

Quantum state teleportation can be expressed as

|ψ〉B = σi,BMAS(i)|ω〉AB|ψ〉S, (29)

i.e., an unknown state |ψ〉S measured by Bell mea-

surement MAS [2], and the result i is used to cor-

rect the Pauli byproduct σi. The state is trans-

ferred from system S to B.

Quantum state teleportation has an impor-

tant symmetry, which is manifested in the fact

that the probability of its Pauli correction is the

same. The Pauli X and Z effects on the input S

can be expressed as Pauli action on the final state.

The symmetry is Zd×Zd, which is also the global

symmetry of a one-dimensional cluster state [78],

whose application in computing is based on the

quantum teleportation. Further, using the univer-

sal quantum gate teleportation mechanism [79],

i.e. according to symmetry

UσiU
† =

∑
j

Tijσj , (30)

where U ∈ SU(d), [Tij ] ∈ SU(d2) is an affine rep-

resentation of U [144], the U at the input can be

transferred to the output by the action of T at the

measuring end, making

U |ψ〉B = σi,BTMAS(i)|ωUt〉AB|ψ〉S. (31)

Note that here U is known and the measurement

in the standard basis is made after the action of

T . For |ωUt〉, U needs to be transposed because

(U ⊗1)|ω〉 = (1⊗U t)|ω〉. Then, using this mech-

anism and the read/write scheme, arbitrary algo-

rithmic process (e.g., 〈ψf |).Un · · ·U2U1|ψi〉) can be

simulated to prove the universality of the model.

For hardware, this mechanism can be used in the

construction of quantum chips. This is described

later in the Section 6.3.

6.1.3 Program conversion

Given a quantum program, beyond measure-

ments we can perform additional operations on it,
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which also forms the basis of algorithm design in

the von Neumann architecture. Since the program

is a Choi state, the general operation on it is a su-

perchannel [40–42], which can be expressed as

Ŝ(E)(ρ) = traV E U(ρ⊗ |0〉〈0|), (32)

where ρ is the initial state, U and V are unitary

operators, and a is the auxiliary system. The di-

mension of V can be larger than that of U [145].

The above equation can also be represented as an

action on the Choi state

Ŝ(E)(ρ) = trS̄V⊗Ũ(ωE ⊗ω)(1⊗ρt⊗|0〉〈0|). (33)

where Ũ is equivalent to U [35]. trS̄ does not act on

the data end S. A series of superchannels cascaded

together form what is known as a quantum comb,

collectively referred to as superchannels in this

work. By repeatedly utilizing the channel-state

duality principle, higher-order superchannels can

be obtained. We see that entangled bits (ebits)

play a crucial role in the implementation of super-

channels, which is also the basis for their resource

theory characterization [127].

6.1.4 Quantum control unit

The quantum control unit refers to a quan-

tum system capable of controlling the implemen-

tation of a quantum program. One of its funda-

mental roles is to transform a gate U into a con-

trolled form ∧U . Initially, it was discovered that

for any unknown quantum gate process, this is

impossible to achieve, which is known as the un-

controllability theorem [143]. This is because it

violates a fundamental principle of quantum me-

chanics, namely, it would convert the global phase

of U into a physically significant relative phase.

In fact, A. Kitaev was the first to discover that if

one assumes knowledge of a certain eigenvalue and

eigenstate of U , it can be utilized as an auxiliary

to realize the control process [88]. That is,

f(U)|c〉|ψ〉|λ〉 = ∧U |c〉|ψ〉|λ〉, (34)

where U |λ〉 = |λ〉, f(U) = ∧Ξ(1 1 U)∧Ξ, ∧Ξ is

a controlled swap gate. This ancilla eliminates

the factor of the global phase of U . Therefore,

unlike quantum programs, the quantum control

unit does not require measurements to be imple-

mented, but can directly serve as a quantum in-

put signal. The structure of the entire quantum

von Neumann architecture is shown in Fig. 8. Un-

like in the classical case, here the quantum control

flow and information flow can become entangled.

Quantum control can also be viewed as a type of

superchannel process, where both the control unit

and the data unit are equally important. The role

of the quantum control unit warrants further in-

depth research.

6.2 Features

Here, we analyze the fundamental character-

istics of the quantum von Neumann architecture,

including its modularity, security, programmabil-

ity, and its overall matrix product state (MPS)

structure. These characteristics can be better un-

derstood through comparisons with other models.

Modularity is a foundational principle in the

construction of the von Neumann architecture. It

plays a crucial role in the design of real computer

hardware and is equally important in software de-

velopment. Modules and the interfaces between

them are essential components of modern comput-

ing devices [12]. Traditional circuit models often

overlook modularity, as they primarily focus on
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the basic theoretical requirement of universality.

Modularity, along with digitization (see Section

2.1), serves as an important metric to distinguish

computing systems from physical systems. This is

because natural physical systems, such as atoms

and molecules, are not typically divided into re-

placeable functional parts.

Security is a key feature that distinguishes the

quantum von Neumann architecture from classical

computing and other quantum computing mod-

els. In this context, security is primarily based on

quantum storage (as well as quantum communi-

cation) and extends the idea of secure communi-

cation to storage [146]. Since quantum programs

are stored as Choi states, an external eavesdrop-

per can only obtain information about the Choi

state through measurement, which would disrupt

the program. In communication, the program cre-

ator sends the Choi state to the user, who must

be authenticated. Theoretical studies show that

a certain number of Choi state copies can meet

verification requirements [126,147] while ensuring

that insufficient information about the Choi state

is leaked to the user. This allows the program

creator to maintain security against both the user

and third parties.

This form of security differs from that of so-

called blind quantum computing [74]. In blind

quantum computing tasks, a user delegates a com-

putational task to a computing center or provider

without revealing the details of the computation

(input, output, or process). In this scenario, the

user knows the classical representation of the pro-

gram [U ], but the provider has the capability to

implement U or even prepare |U〉. In the von Neu-

mann architecture, the provider typically knows

both [U ] and U , while the user can utilize |U〉

without fully understanding its information [U ].

Blind quantum computing may be suitable for

specific stages or scenarios in quantum computing,

such as when a limited number of quantum com-

puting centers provide secure services to a broad

user base.

Programmability is a critical requirement for

hardware, enabling the same hardware struc-

ture to achieve different functions. This capa-

bility played a pivotal role in the development

of general-purpose computers and facilitated the

transition from analog to digital signals in many

technologies. In this context, programmability re-

quires that a process or function can be stored

as data, effectively converting hardware into soft-

ware for further use. In the circuit model, pro-

grams are represented as classical circuit “dia-

grams,” i.e., [U ]. For example, in a supercon-

ducting platform, programmability refers to the

ability to execute different programs [U ] on the

same platform, representing classical programma-

bility. In our model, quantum programs are repre-

sented as Choi states, and quantum programma-

bility refers to the ability to execute different

programs |U〉 on the same platform. Addition-

ally, the combination of Choi states is control-

lable. For instance, based on control signals, one

can choose whether to incorporate a specific Choi

state [127,142], corresponding to the activation or

deactivation of a gate. If quantum control signals

are used, they become part of the overall quantum

algorithm, enhancing quantum programmability.

At a higher level, the combination of Choi

states is related to the matrix product state

(MPS) form, which also plays a significant role
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in local Turing machines and measurement-based

quantum computing (see Section 4.1). MPS are

represented as a series of tensors (see Fig. 7),

where each tensor has both physical and virtual

(entangled) indices. In the von Neumann archi-

tecture, the Choi state can be viewed as living

in the entanglement space, and operations in the

CPU involve constructing tensors and measuring

their indices. A local Turing machine assumes the

availability of ebits, from which MPS states are

prepared by constructing tensors. Measurement-

based quantum computing typically assumes the

availability of an MPS, with computation per-

formed by measuring the physical indices. From

this perspective, the von Neumann architecture

can be seen as an extension of these two models.

In summary, the quantum von Neumann ar-

chitecture integrates modularity, security, pro-

grammability, and an MPS-based structure, of-

fering a versatile framework that extends and en-

hances existing quantum computing models.

6.3 Chip design

Existing classical electronic chips are gener-

ally designed based on the von Neumann archi-

tecture, with their hardware foundation consist-

ing of circuits composed of semiconductor diodes,

transistors, and other components. From a hard-

ware perspective, a single piece of hardware can

perform multiple functions, such as storing data,

executing programs, and serving as part of logi-

cal gates or even analog circuits. As mentioned

earlier, its structure is modular and hierarchical,

incorporating numerous programmable logic mod-

ules. This serves as an excellent example for the

development of quantum chips.

To illustrate some structural characteristics

of current quantum chips, let us consider a few

examples. In superconducting chips, qubits serve

as the hardware, while quantum gates are gen-

erated in real time based on the interaction be-

tween qubits and control systems. As previously

mentioned, their programmability is classical in

nature. In quantum optical chips [148], quan-

tum gates are the hardware, and qubits are gen-

erated in real time using lasers. Of course, pho-

tons can also be stored in hardware such as op-

tical fibers or optical cavities. Currently, these

systems employ a classical-quantum hybrid archi-

tecture, where the quantum chip acts as the com-

puting unit, and the remaining data processing is

handled by classical computers.

The structure of quantum chips can be fur-

ther extended using the quantum von Neumann

architecture. This involves integrating quantum

program and control modules. For instance, in a

superconducting platform, program storage mod-

ules and control modules can both be composed

of superconducting qubits. This approach breaks

the traditional correspondence between gates and

qubits in space and time, meaning quantum gates

can exist both in space (as hardware) and in time

(generated in real time), and the same applies to

qubits. In fact, classical chips have already im-

plemented this concept. The program module

can contain a large system of programs or some

basic gate programs. By leveraging the quan-

tum gate mechanism and the superchannel pro-

cess, programmable gate arrays can be formed us-

ing H, T, and CNOT gate programs, with FPGA

serving as the basic structure of quantum chips.

Additionally, various systems can be mixed and
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matched in hardware, combining the properties of

different physical systems, which is also a direc-

tion currently being explored [149].

Similar to classical systems, quantum systems

can incorporate various types of storage, such

as internal memory, external memory, and flash

memory, utilizing physical methods like electric-

ity, magnetism, and optics. External memory typ-

ically uses disks or optical discs, but due to their

slower speeds, modern chips rely on internal mem-

ory. When running a program, data is usually im-

ported from external memory into internal mem-

ory, and the final results are stored back in exter-

nal memory. For fast calculations, the lifetime of

a qubit in memory or on a chip does not need to

be arbitrarily long. However, if stable quantum

memory is required, decoherence must be funda-

mentally overcome. Unlike the magnetic states

used in classical disks, no self-correcting quantum

system has been discovered [136]. If active quan-

tum error correction is employed, it incurs sig-

nificant overhead. Therefore, the development of

suitable quantum memory devices remains an im-

portant experimental direction [150].

图 9: Schemetics of quantum super-algorithm. The ‘mother’

algorithm (shaded) maps the input data (boxes) into the desired

‘child’ algorithm, which acts on the data system (top register).

The classical-quantum hybrid algorithm (Fig.3) is a special case,

and the MPS formula (Fig.7) is also a special case of it. There

can also be quantum correlation or memory (unshown) between

the input (boxes).

6.4 Algorithm design

In the above discussion, we have not strictly

distinguished between the concepts of program,

algorithm, or process, because mathematically

they can all be represented as unitary evolution or

channels. In computers, an algorithm and a pro-

gram are not the same. Programming or the im-

plementation of a program depends on program-

ming languages, such as machine language, assem-

bly language, and high-level languages, whereas

an algorithm is mathematical in nature, and the

same algorithm can be implemented by different

programs. Generally speaking, both are aspects

of computer software.

The impact of the quantum von Neumann

architecture on software can also be divided into

two points. In terms of programs, it makes quan-

tum assembly language possible, while currently,

we are still in the stage of quantum machine lan-

guage. The development of languages mainly de-

pends on computer scientists. In terms of al-

gorithms, analogous to the significance of super-

channels to channels, it makes the design of quan-

tum super-algorithms possible. The structure of

a quantum super-algorithm is shown in Fig. 9,

where a quantum “parent” algorithm is used to

design a quantum “child” algorithm. The algo-

rithm structure in the circuit model we mentioned

(Fig. 3) is a special case of it: the parent algorithm

is classical or classical-quantum hybrid. It should

be noted that although a super-algorithm can also

be treated as an ordinary algorithm, just as any

computational model can be simulated by the cir-

cuit model, considering it as a super-algorithm

provides new perspectives. From the perspective

of resource theory, it utilizes quantum storage or
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memory as a resource [127]. In classical algo-

rithms, super-algorithms have already been widely

applied, such as the well-known machine learning

algorithms.

Some quantum algorithms or schemes that

have been discovered can be viewed as quan-

tum super-algorithms. For example, the quantum

channel discrimination scheme is one of the ear-

liest applications of quantum superchannel the-

ory, using superchannels instead of simple chan-

nels can improve the success rate of certain chan-

nel discriminations [151]. The recently proposed

quantum singular value transformation (QSVT)

[20] can uniformly describe several quantum al-

gorithms, it is also a quantum super-algorithm

[59]. Other examples include quantum game the-

ory [152], metrology schemes [153], quantum opti-

mization [154], and especially quantum machine

learning [155–158]. Machine learning forms an

algorithm to solve problems after learning from

a large number of samples. Compared to classi-

cal machine learning, quantum machine learning

algorithms offer exponential speedups in certain

high-precision computational problems [158,159].

7 Discussion and Conclusion

In this paper, we investigate the classifica-

tion of universal quantum computing models from

the perspective of quantum resource theory, and

specifically analyze certain models, such as the

quantum von Neumann architecture. Among

these, the development of some models is rela-

tively mature, while the development of others has

only just begun.

Since DiVincenzo [32] proposed the funda-

mental requirements for realizing universal quan-

tum computing at the beginning of the century,

numerous universal quantum computing models

or architectures have been developed to explore

the implementation of quantum computers. These

models have demonstrated a richer landscape than

the conventional circuit model in terms of quan-

tum algorithm design, physical implementation,

and application scenarios. This paper attempts

to systematically understand universal quantum

computing models from the perspective of quan-

tum resource theory, although our research re-

mains insufficient so far. In the main text, we have

raised several questions. For example, the non-

local computing model utilizes PR correlations,

which go beyond the scope of quantum theory,

and whether they can be modified is a question

worth investigating. We have also overlooked the

issue of resource quantification. The most mature

development lies in the quantification of quantum

state resources, such as coherence and entangle-

ment. Although other types of resources can also

be converted into state resources for quantifica-

tion, this still requires specific research. Addition-

ally, due to space limitations, we were unable to

analyze in detail the specific schemes for combin-

ing two types of models in the classification table,

which are closely related to the error-correcting

codes employed.

Before concluding, we further discuss topics

such as quantum resources and quantum advan-

tage, universal versus dedicated models, with the

aim of fostering a broader understanding of uni-

versal quantum computing.
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7.1 Quantum resources and quantum

advantages

In the early stages of quantum computing de-

velopment, the understanding of the core char-

acteristics of quantum computing was not clear.

For example, based on Shor’s algorithm, Grover’s

algorithm, and others, some computer scientists

believed that the cause of quantum speedup lay

in quantum interference [160]. However, in quan-

tum teleportation, quantum encryption commu-

nication, and even quantum computing, quantum

entanglement also plays a crucial role [113,161,

162]. Later, on one hand, it was shown in the

measurement-based quantum computing model

that a large amount of entanglement does not

necessarily lead to universality [82,83], while on

the other hand, it was demonstrated in the cir-

cuit model that a small amount of entanglement

is sufficient to ensure universality [163]. At the

same time, some studies suggested that the foun-

dation of quantum speedup is quantum contextu-

ality [164]. Our systematic research indicates that

quantum resources need to be understood within

the framework of a universal quantum comput-

ing model, and they cannot be simply compared

or substituted. Instead, they are all quantum re-

sources that can be utilized, and studying their

mutual transformations is also beneficial.

Quantum advantage stems from the ratio-

nal utilization of quantum resources. People gen-

erally equate quantum advantage with quantum

speedup, but it can also manifest in other as-

pects such as storage, security, energy consump-

tion, and metrology [142]. For example, security

was one of the earliest recognized aspects [146],

and the confidentiality and security of quantum

communication, as well as its integration with

quantum computing, remain important research

directions in the field [73,74,165]. This could po-

tentially avoid some security issues present in ex-

isting non-quantum networks. In terms of stor-

age, A. Holevo was the first to study the commu-

nication capacity (and also storage capacity) of

qubits and channels from an information theory

perspective [166]. Recently, it has been discov-

ered that utilizing quantum storage (or memory)

makes quantum machine learning algorithms sig-

nificantly superior to classical algorithms in cer-

tain problems [158,159]. People have also begun

to focus on studying quantum advantages in areas

such as energy consumption [167,168] and metrol-

ogy precision [68,132]. However, it is currently

not possible to control the required quantum sys-

tems with arbitrarily high precision, which poses a

challenge to the realization of near-term quantum

advantage.

7.2 Universal and non-universal

Beyond the research paradigm of universal

quantum computing, there exists the direction

of dedicated non-universal quantum computing.

Dedicated or specialized, as the name suggests, is

aimed at specific types of problems, and it does

not need to simultaneously meet the requirements

of digitization, universality, and programmability.

However, it is also difficult to define the scope of

dedicated quantum computing, with examples of

research directions including quantum emulation

[95] and continuous-variable quantum information

processing [169]. This is also the case in classi-

cal computing, and specialized computing mod-

els are increasingly gaining attention. As shown
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in Fig. 10, GPUs, optical chips, memristors, and

others have demonstrated advantages over exist-

ing CPU architectures in certain computational

tasks. These specialized computing models can

be seen as a reasonable transition from classical

computing to universal quantum computing.

Since achieving fault-tolerance is currently

challenging, developing specialized quantum com-

puting is also important. For example, in quan-

tum emulation or simulation, the reliable emula-

tion of certain quantum many-body physical phe-

nomena will aid scientific research, as these phe-

nomena or models (such as superconductivity and

the Hubbard model) are mostly difficult to solve

on existing computers [170]. To improve the relia-

bility of emulation, it is also necessary to develop

error control techniques, which can include dy-

namical decoupling [51], error mitigation and esti-

mation methods [171,172]. Additionally, research

on continuous variables (photons, phonons, etc.)

is essential. It should be noted that in the classical

domain, analog (i.e., continuous-variable) circuits

have always accompanied digital circuits, playing

a significant role in various electronic devices.

图 10: In between the current classical computers and the uni-

versal quantum computers in the future, there are other research

paradigm, such as optical chips, memristors, GPU for AI, and

quantum simulators etc.

7.3 Challenges

Although the field of quantum computing has

developed for over 30 years, it still faces many

core challenges. These challenges broadly fall into

three aspects: fundamental theory, hardware, and

software. On the theoretical side, some properties

of quantum channels are not yet fully understood.

For example, the capacity of quantum channels

is extremely difficult to calculate, due to certain

peculiar properties (such as non-additivity) [173],

which means that the quantum version of Shan-

non’s information theory has not yet been fully

established. Channel capacity is the supremum

of communication rates (bandwidth), and it has

significant guiding implications for the design of

high-efficiency error-correcting codes. Addition-

ally, using the matrix product state formalism,

the properties of quantum states can be reduced

to the properties of channels, yet the classification

problem of few-body quantum entangled states re-

mains unresolved [174], an issue closely related to

distributed quantum computing. On the hard-

ware side, there is still a fundamental need to over-

come decoherence and achieve large-scale quan-

tum error correction [175]. While on the software

side, there is a need to discover more quantum al-

gorithms and develop quantum programming and

application software. In summary, our research

on universal quantum computing models indicates

that there are still many fundamental properties

and applications of quantum information remain-

ing to be explored.
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