A Brief History of Universal Quantum Computing Models
1973, Charles H. Bennett proved the existence of reversible universal Turing machines. IBMJ. Res. Dev. 17:525
1980, Paul Benioff proved that reversible computing can be achieved based on quantum mechanics (via Hamiltonian-evolution models). J. Statist. Phys. 22:563, and a few papers in 1982. He also studied quantum Turing machines years later. Fortsch.Phys. 46:423 (1998)
1982, Richard P. Feynman envisaged quantum computers that can be universal and more efficient than classical computers to simulate quantum physics. Int. J. Theor. Phys. 21:467, also Found. Phys. 16:507 (1986)
1985, David Deutsch proved the existence of universal quantum Turing machines. Proc. Roy. Soc. 400:97. He also introduced the quantum circuit model. Proc. Roy. Soc. 425:73 (1989)
1993, Ethan Bernstein and Umesh Vazirani constructed universal quantum Turing machines, studied BQP (bounded-error polynomial) class, showed that quantum computing is digital. First in STOC, later on SIAM J. Comput. 26, 1411 (1997)
1993, Andrew Chi-Chih Yao proved that quantum Turing machines and quantum circuits are equivalent models, also defined quantum communication complexity. FOCS
1995, A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter studied universal gate set. PRA 52:3457
1995, John Watrous proved that one-dimensional quantum cellular automata (QCA) is universal by simulating quantum Turing machines. FOCS. A more rigorous definition of QCA is by B. Schumacher and R. F. Werner in 2004, Reversible quantum cellular automata, arXiv:quant-ph/0405174
1997, Michael A. Nielsen and Isaac L. Chuang studied stored-program quantum computing and the no-programming theorem, PRL 79:321. This poses a problem that is resolved only lately.
1997, Alexei Yu Kitaev developed the model of topological quantum computing by anyons, Annals Phys. 303:2 (2003), see also Commun. Math. Phys. 227:587 (2002)
1998, Edward Farhi and Sam Gutmann studied quantum walk algorithm, PRA 58:915, the complete proof of universality of quantum walk is by Andrew M. Childs, David Gosset, and Zak Webb, Science 339:791 (2013)
1999, Daniel Gottesman and Isaac L. Chuang developed quantum gate teleportation and Clifford hierarchy, Nature 402:390
1999, Paolo Zanardi, Mario Rasetti, and others developed holonomic/geometric quantum computing, Phys.Lett. A 264:94
2000, Sergey Bravyi and Alexei Yu Kitaev developed fermionic quantum computing, Annals Phys. 298:210 (2002)
2000, Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser proposed quantum computation by adiabatic evolution, arXiv:quant-ph/0001106, the universality (by state generation) is proved later by Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev, FOCS, (2004)
2001, Robert Raussendorf and Hans J. Briegel developed the measurement-based quantum computing, PRL 86:5188
2001, autonamous Hamiltonian computing by Ari Mizel, M. W. Mitchell, and Marvin L. Cohen, PRA 63:040302
2002, Hamiltonian QCA-like models by Simon C. Benjamin, PRL 88:017904, and also Xingxiang Zhou, Zheng-Wei Zhou, Guang-Can Guo, and Marc J. Feldman, PRL 89:197903, quantum state transfer by Sougato Bose, PRL 91:207901 (2003)
2002, Claude Crepeau, Daniel Gottesman, and Adam Smith studied secure muti-party quantum computation, STOC
2004, Simon Perdrix and Philippe Jorrand, Measurement-based quantum Turing machines and their universality, arXiv:quant-ph/0404146
2004, Johan Åberg, Subspace preservation, subspace locality, and gluing of completely positive maps, Ann. Phys. 313:326
2005, Sergey Bravyi and Alexei Yu Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas, PRA 71:022316
2006, Gui-Lu Long, General quantum interference principle and duality computer, Commun. Theor. Phys. 45:825, also see Int. J. Theor. Phys. 50:1305 (2011)
2006, Timothy P. Spiller, Kae Nemoto, Samuel L. Braunstein, William J. Munro, Peter van Loock, and Gerard J. Milburn, Quantum computation by communication, New J. Phys. 8:30
2007, Dominik Janzing, Spin-1/2 particles moving on a two-dimensional lattice with nearest-neighbor interactions can realize an autonomous quantum computer, PRA 75:012307
2008, K. G. H. Vollbrecht and J. I. Cirac, Quantum simulators, continuous-time automata, and translationally invariant systems, PRL 100:010501
2008, G. Chiribella, G. M. D’Ariano, and P. Perinotti, Quantum circuit architecture, PRL 101:060401, see also PRA 88:022318 (2013)
2008, Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, Quantum random access memory, PRL 100:160501
2008, Sergey Bravyi, David P. DiVincenzo, Daniel Loss, and Barbara M. Terhal, Quantum Simulation of Many-Body Hamiltonians Using Perturbation Theory with Bounded-Strength Interactions, PRL 101, 070503
2009, Frank Verstraete, Michael M. Wolf, and J. Ignacio Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5:633
2009, Bryan Eastin and Emanuel Knill, Restrictions on transversal encoded quantum gate sets, PRL 102:110502
2009, Kaveh Khodjasteh and Lorenza Viola, Dynamically Error-Corrected Gates for Universal Quantum Computation, PRL 102:080501
2009, Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi, Universal blind quantum computation, FOCS
2010, Stephen P. Jordan, Permutational quantum computing, Quant. Infor. Comput. 10:470
2010, Daniel Nagaj, Fast universal quantum computation with railroad-switch local hamiltonians, J. Math. Phys. 51:062201
2010, Janet Anders and coauthors, Ancilla-driven universal quantum computation, PRA 82:020301
2012, Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland, Surface codes: Towards practical large-scale quantum computation, PRA 86:032324
2012, G. Paz-Silva, A. Rezakhani, J. Dominy, and D. Lidar, Zeno effect for quantum computation and control, PRL 108:080501
2013, Adam Paetznick and Ben W. Reichardt, Universal fault-tolerant quantum computation with only transversal gates and error correction, PRL 111:090505
2013, Daniel Gottesman, Fault-Tolerant Quantum Computation with Constant Overhead, arXiv:1310.2984
2013, M. Van den Nest, Universal quantum computation with little entanglement, PRL 110:060504
2014, Mateus Araújo, Adrien Feix, Fabio Costa, and Časlav Brukner, Quantum circuits cannot control unknown operations, New J. Phys. 16:093026
2015, Sagar Vijay, Timothy H. Hsieh, and Liang Fu, Majorana Fermion Surface Code for Universal Quantum Computation, PRX 5:041038
2016, Seth Lloyd and Barbara Terhal, Adiabatic and Hamiltonian computing on a 2d lattice with simple two-qubit interactions, New J. Phys. 18:023042
2016, J. Marshall, L. Venuti, and P. Zanardi, Modular quantum-information processing by dissipation, PRA 94:052339
2017, A. Mantri, T. Demarie, N. Menicucci, and J. Fitzsimons, Flow ambiguity: A path towards classically driven blind quantum computation PRX 7:031004
2017, J. Ikonen, J. Salmilehto, and M. Möttönen, Energy-efficient quantum computing, npj Quantum Information
2018, Toby Cubitt, Ashley Montanaro, Stephen Piddock, Universal quantum Hamiltonians, Proc. Natl. Acad. Sci. 115:9497
2018, Urmila Mahadev, Classical verification of quantum computations, arXiv:1804.01082v2
2019, Abel Molina and John Watrous, Revisiting the simulation of quantum Turing machines by quantum circuits, Proc. Roy. Soc. 475:20180767
2020, Qisheng Wang and Mingsheng Ying, Quantum random access stored-program machines, arXiv:2003.03514
2020, Yuxiang Yang, Renato Renner, Giulio Chiribella, Optimal universal programming of unitary gates, PRL 125:210501
2020, Dong-Sheng Wang, A local model of quantum Turing machines, Quant. Infor. Comput. 20:0213; A comparative study of universal quantum computing models: towards a physical unification, Quantum Engineering. 2021;e85; A prototype of quantum von Neumann architecture, Commun. Theor. Phys. 74:095103
2020, Adrian Parra-Rodriguez and coauthors creat a Hamiltonian-based digital-analog quantum computation, PRA 101:022305
2021, Sara Bartolucci and coauthors, Fusion-based quantum computation, arXiv:2101.09310
2021, Giulio Chiribella, Yuxiang Yang, and Renato Renner, Fundamental Energy Requirement of Reversible Quantum Operations, Phys. Rev. X 11:021014
2021, Zuzana Gavorová, Matan Seidel, and Yonathan Touati, Topological obstructions to implementing quantum if-clause, arXiv:2011.10031v2
2023, Dong-Sheng Wang, a unification/classification of universal computing models from resource theory, Commun. Theor. Phys. 75 125101
2023, Kyrylo Simonov and coauthors show that quantum SWICTH with indefinite causal order is universal, arXiv:2311.13654
2024, Philip A. LeMaitre and coauthors show that relativistic motions enables universal quantum computing, arXiv:2411.00105
ALSO SEE Complexity Zoo, Quantum Algorithm Zoo, Entropy Zoo, Error Correction Zoo
PLEASE LET ME KNOW IF IMPORTANT PROGRESS WAS NOT LISTED HERE.